84.0k views
1 vote
Solve y^3= −125.

y = −5

y = ±5

y = −25

y = ±25

User Bhish
by
3.1k points

2 Answers

3 votes


\huge\text{Hey there!}



\mathsf{y^3 = -125}


\large\text{Solve/take the cube root}


\mathsf{(-125)^{^(1)/(3)}}\mathsf{ = y}


\mathsf{y = (-125)^{^(1)/(3)}}


\large\text{Simplify it}


\mathsf{y = -5}



\huge\text{Therefore, your answer is: \boxed{\mathsf{y = -5\ (\rm \bold{O}ption\ A.)}}}\huge\checkmark



\huge\text{Good luck on your assignment \& enjoy your day!}


~
\frak{Amphitrite1040:)}

User Golmschenk
by
3.1k points
5 votes

Answer:

A. y=-5

Explanation:

Use the order of operations.

PEMDAS stands for:

  • Parentheses
  • Exponents
  • Multiply
  • Divide
  • Add
  • Subtract

Do exponents first.


\sf{y^3=-125}


\sf{x=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}(-1-√(3)i)/(2),\:\sqrt[3]{f\left(a\right)}(-1+√(3)i)/(2)}}


\rightarrow \sf{y=\sqrt[3]{-125},\:y=\sqrt[3]{-125}(-1+√(3)i)/(2),\:y=\sqrt[3]{-125}(-1-√(3)i)/(2)}


\sf{\sqrt[3]{-125}=\boxed{\sf{-5}}}

Therefore, the correct answer is y=-5.

I hope this helps, let me know if you have any questions.

User Maraujop
by
3.2k points