89.9k views
5 votes
X+2/3x-(x-5)=10x-5/x

User Nonlinear
by
8.0k points

1 Answer

4 votes

Answer:

905}}{56}

Explanation:

How to solve your problem

Quadratic formula

1

Combine multiplied terms into a single fraction

x+\frac{2}{3}x-(x-5)=10x+\frac{-5}{x}

x+\frac{2x}{3}-(x-5)=10x+\frac{-5}{x}

2

Distribute

x+\frac{2x}{3}-\left( x-5\right) =10x+\frac{-5}{x}

x+\frac{2x}{3}-x+5=10x+\frac{-5}{x}

3

Combine like terms

\textcolor{#B14BA5}{x}+\frac{2x}{3}\textcolor{#B14BA5}{-x}+5=10x+\frac{-5}{x}

\textcolor{#B14BA5}{\frac{2x}{3}}+5=10x+\frac{-5}{x}

4

Find common denominator

\frac{2x}{3}+5=10x+\frac{-5}{x}

\frac{2x}{3}+\frac{3\cdot 5}{3}=10x+\frac{-5}{x}

5

Combine fractions with common denominator

\frac{2x}{3}+\frac{3\cdot 5}{3}=10x+\frac{-5}{x}

\frac{2x+3\cdot 5}{3}=10x+\frac{-5}{x}

6

Multiply the numbers

\frac{2x+\textcolor{#B14BA5}{3}\cdot \textcolor{#B14BA5}{5}}{3}=10x+\frac{-5}{x}

\frac{2x+\textcolor{#B14BA5}{15}}{3}=10x+\frac{-5}{x}

7

Find common denominator

\frac{2x+15}{3}=10x+\frac{-5}{x}

\frac{2x+15}{3}=\frac{x\cdot 10x}{x}+\frac{-5}{x}

8

Combine fractions with common denominator

\frac{2x+15}{3}=\frac{x\cdot 10x}{x}+\frac{-5}{x}

\frac{2x+15}{3}=\frac{x\cdot 10x-5}{x}

9

Re-order terms so constants are on the left

\frac{2x+15}{3}=\frac{x\cdot \textcolor{#B14BA5}{10}x-5}{x}

\frac{2x+15}{3}=\frac{\textcolor{#B14BA5}{10}xx-5}{x}

10

Combine exponents

\frac{2x+15}{3}=\frac{10\textcolor{#B14BA5}{x}\textcolor{#B14BA5}{x}-5}{x}

\frac{2x+15}{3}=\frac{10\textcolor{#B14BA5}{x^{2}}-5}{x}

11

Multiply all terms by the same value to eliminate fraction denominators

\frac{2x+15}{3}=\frac{10x^{2}-5}{x}

3x\cdot \frac{2x+15}{3}=3x\cdot \frac{10x^{2}-5}{x}

12

Cancel multiplied terms that are in the denominator

3x\cdot \frac{2x+15}{3}=3x\cdot \frac{10x^{2}-5}{x}

x(2x+15)=3\left( 10x^{2}-5\right)

13

Distribute

\textcolor{#B14BA5}{x(2x+15)}=3\left( 10x^{2}-5\right)

\textcolor{#B14BA5}{2x^{2}+15x}=3\left( 10x^{2}-5\right)

14

Distribute

2x^{2}+15x=\textcolor{#B14BA5}{3\left( 10x^{2}-5\right) }

2x^{2}+15x=\textcolor{#B14BA5}{30x^{2}-15}

15

Move terms to the left side

2x^{2}+15x=30x^{2}-15

2x^{2}+15x-\left( 30x^{2}-15\right) =0

16

Distribute

2x^{2}+15x-\left( 30x^{2}-15\right) =0

2x^{2}+15x-30x^{2}+15=0

17

Combine like terms

\textcolor{#B14BA5}{2x^{2}}+15x\textcolor{#B14BA5}{-30x^{2}}+15=0

\textcolor{#B14BA5}{-28x^{2}}+15x+15=0

18

Common factor

-28x^{2}+15x+15=0

-\left( 28x^{2}-15x-15\right) =0

19

Divide both sides by the same factor

-\left( 28x^{2}-15x-15\right) =0

28x^{2}-15x-15=0

20

Use the quadratic formula

x=\frac{-\textcolor{#D24040}{b}\pm \sqrt{\textcolor{#D24040}{b}^{2}-4\textcolor{#B14BA5}{a}\textcolor{#3172E0}{c}}}{2\textcolor{#B14BA5}{a}}

Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

28x^{2}-15x-15=0

a=\textcolor{#B14BA5}{28}

b=\textcolor{#D24040}{-15}

c=\textcolor{#3172E0}{-15}

x=\frac{-(\textcolor{#D24040}{-15})\pm \sqrt{(\textcolor{#D24040}{-15})^{2}-4\cdot \textcolor{#B14BA5}{28}(\textcolor{#3172E0}{-15})}}{2\cdot \textcolor{#B14BA5}{28}}

21

Simplify

Evaluate the exponent

Multiply the numbers

Add the numbers

Multiply the numbers

x=\frac{15\pm \sqrt{1905}}{56}

22

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

x=\frac{15+\sqrt{1905}}{56}

x=\frac{15-\sqrt{1905}}{56}

23

Solve

Rearrange and isolate the variable to find each solution

x=\frac{15+\sqrt{1905}}{56}

User Ayanami
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories