89.9k views
5 votes
X+2/3x-(x-5)=10x-5/x

User Nonlinear
by
3.5k points

1 Answer

4 votes

Answer:

905}}{56}

Explanation:

How to solve your problem

Quadratic formula

1

Combine multiplied terms into a single fraction

x+\frac{2}{3}x-(x-5)=10x+\frac{-5}{x}

x+\frac{2x}{3}-(x-5)=10x+\frac{-5}{x}

2

Distribute

x+\frac{2x}{3}-\left( x-5\right) =10x+\frac{-5}{x}

x+\frac{2x}{3}-x+5=10x+\frac{-5}{x}

3

Combine like terms

\textcolor{#B14BA5}{x}+\frac{2x}{3}\textcolor{#B14BA5}{-x}+5=10x+\frac{-5}{x}

\textcolor{#B14BA5}{\frac{2x}{3}}+5=10x+\frac{-5}{x}

4

Find common denominator

\frac{2x}{3}+5=10x+\frac{-5}{x}

\frac{2x}{3}+\frac{3\cdot 5}{3}=10x+\frac{-5}{x}

5

Combine fractions with common denominator

\frac{2x}{3}+\frac{3\cdot 5}{3}=10x+\frac{-5}{x}

\frac{2x+3\cdot 5}{3}=10x+\frac{-5}{x}

6

Multiply the numbers

\frac{2x+\textcolor{#B14BA5}{3}\cdot \textcolor{#B14BA5}{5}}{3}=10x+\frac{-5}{x}

\frac{2x+\textcolor{#B14BA5}{15}}{3}=10x+\frac{-5}{x}

7

Find common denominator

\frac{2x+15}{3}=10x+\frac{-5}{x}

\frac{2x+15}{3}=\frac{x\cdot 10x}{x}+\frac{-5}{x}

8

Combine fractions with common denominator

\frac{2x+15}{3}=\frac{x\cdot 10x}{x}+\frac{-5}{x}

\frac{2x+15}{3}=\frac{x\cdot 10x-5}{x}

9

Re-order terms so constants are on the left

\frac{2x+15}{3}=\frac{x\cdot \textcolor{#B14BA5}{10}x-5}{x}

\frac{2x+15}{3}=\frac{\textcolor{#B14BA5}{10}xx-5}{x}

10

Combine exponents

\frac{2x+15}{3}=\frac{10\textcolor{#B14BA5}{x}\textcolor{#B14BA5}{x}-5}{x}

\frac{2x+15}{3}=\frac{10\textcolor{#B14BA5}{x^{2}}-5}{x}

11

Multiply all terms by the same value to eliminate fraction denominators

\frac{2x+15}{3}=\frac{10x^{2}-5}{x}

3x\cdot \frac{2x+15}{3}=3x\cdot \frac{10x^{2}-5}{x}

12

Cancel multiplied terms that are in the denominator

3x\cdot \frac{2x+15}{3}=3x\cdot \frac{10x^{2}-5}{x}

x(2x+15)=3\left( 10x^{2}-5\right)

13

Distribute

\textcolor{#B14BA5}{x(2x+15)}=3\left( 10x^{2}-5\right)

\textcolor{#B14BA5}{2x^{2}+15x}=3\left( 10x^{2}-5\right)

14

Distribute

2x^{2}+15x=\textcolor{#B14BA5}{3\left( 10x^{2}-5\right) }

2x^{2}+15x=\textcolor{#B14BA5}{30x^{2}-15}

15

Move terms to the left side

2x^{2}+15x=30x^{2}-15

2x^{2}+15x-\left( 30x^{2}-15\right) =0

16

Distribute

2x^{2}+15x-\left( 30x^{2}-15\right) =0

2x^{2}+15x-30x^{2}+15=0

17

Combine like terms

\textcolor{#B14BA5}{2x^{2}}+15x\textcolor{#B14BA5}{-30x^{2}}+15=0

\textcolor{#B14BA5}{-28x^{2}}+15x+15=0

18

Common factor

-28x^{2}+15x+15=0

-\left( 28x^{2}-15x-15\right) =0

19

Divide both sides by the same factor

-\left( 28x^{2}-15x-15\right) =0

28x^{2}-15x-15=0

20

Use the quadratic formula

x=\frac{-\textcolor{#D24040}{b}\pm \sqrt{\textcolor{#D24040}{b}^{2}-4\textcolor{#B14BA5}{a}\textcolor{#3172E0}{c}}}{2\textcolor{#B14BA5}{a}}

Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

28x^{2}-15x-15=0

a=\textcolor{#B14BA5}{28}

b=\textcolor{#D24040}{-15}

c=\textcolor{#3172E0}{-15}

x=\frac{-(\textcolor{#D24040}{-15})\pm \sqrt{(\textcolor{#D24040}{-15})^{2}-4\cdot \textcolor{#B14BA5}{28}(\textcolor{#3172E0}{-15})}}{2\cdot \textcolor{#B14BA5}{28}}

21

Simplify

Evaluate the exponent

Multiply the numbers

Add the numbers

Multiply the numbers

x=\frac{15\pm \sqrt{1905}}{56}

22

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

x=\frac{15+\sqrt{1905}}{56}

x=\frac{15-\sqrt{1905}}{56}

23

Solve

Rearrange and isolate the variable to find each solution

x=\frac{15+\sqrt{1905}}{56}

User Ayanami
by
3.3k points