52,548 views
26 votes
26 votes
Rationalisie the denominator of: 3/√5+√2​

User Giulio Biagini
by
2.9k points

1 Answer

4 votes
4 votes

Answer:


\longmapsto \: √(5) - √(2.)

Explanation:


\sf{(3)/(√(5) + √(2))}

By rationalizing the denominator,


=\sf{(3)/(√(5) + √(2)) * (√(5) - √(2))/(√(5) - √(2))}


=\sf{(3(√(5) - √(2)))/((√(5) + √(2))(√(5) - √(2)))}

Applying the identity in the denominator:-


\boxed{\underline{\red{\rm{(a + b)(a - b) = a^2 - b^2}}}}


=\sf{(3(√(5) - √(2)))/((√(5))^2 - (√(2))^2)}


=\sf{(3(√(5) - √(2)))/(5 - 2)}


=\sf{(3(√(5) - √(2)))/(3)}


=\sf{\frac{\\ot{3}(√(5) - √(2))}{\\ot{3}}}


\blue{\boxed{\underline{\rm{\therefore\:(3)/(√(5) + √(2)) = √(5) - √(2)}}}}

User Soley
by
2.7k points