Answer:
x ≥ 2
Explanation:
Given inequality:
![-(4(x+3))/(5) \leq 4x-12](https://img.qammunity.org/2023/formulas/mathematics/college/hvkqxu6frq53vxibjl855ca41w94mri80q.png)
Values of x less than 2
Substitute two values where x < 2 into the inequality:
![\begin{aligned}x=1 \implies -(4(1+3))/(5) & \leq 4(1)-12\\\\ -(4(4))/(5) & \leq 4-12\\\\ -(16)/(5) & \leq -8 \quad \Rightarrow \textsf{Not a solution}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/b3q6lqqvx21pldeyoe0gstb7yo9u6d38pl.png)
![\begin{aligned}x=0 \implies -(4(0+3))/(5) & \leq 4(0)-12\\\\ -(4(3))/(5) & \leq 0-12\\\\ -(12)/(5) & \leq -12 \quad \Rightarrow \textsf{Not a solution}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/yyywb0hehqg5cx8maxk9xn9x0rnnoafj6l.png)
The values of x < 2 are not solutions to the inequality.
--------------------------------------------------------------------------------
Substitute the value of x = 2 into the inequality:
![\begin{aligned}x=0 \implies -(4(2+3))/(5) & \leq 4(2)-12\\\\ -(4(5))/(5) & \leq 8-12\\\\ -(20)/(5) & \leq -4\\\\ -4 & \leq -4 \quad \Rightarrow \textsf{Yes, a solution}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/dgc60tt9ko9a28k6abd31dokred1xyx5hf.png)
The value of x = 2 is a solution to the inequality.
--------------------------------------------------------------------------------
Values of x more than 2
Substitute two values where x > 2 into the inequality:
![\begin{aligned}x=3 \implies -(4(3+3))/(5) & \leq 4(3)-12\\\\ -(4(6))/(5) & \leq 12-12\\\\ -(24)/(5) & \leq 0 \quad \Rightarrow \textsf{Yes, a solution}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/m0682ld77s0bjc4r6jiw7k74rcdp2bfiso.png)
![\begin{aligned}x=4 \implies -(4(4+3))/(5) & \leq 4(4)-12\\\\ -(4(7))/(5) & \leq 16-12\\\\ -(28)/(5) & \leq 4 \quad \Rightarrow \textsf{Yes, a solution}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/5uxgdur4p3sbnpmp7p57m9u9rjemvxd2ob.png)
The values of x > 2 are solutions to the inequality.
--------------------------------------------------------------------------------
Therefore, the solution to the inequality appears to be x ≥ 2.
To check, solve the inequality:
![\begin{aligned} \implies -(4(x+3))/(5) &\leq 4x-12\\-4(x+3) &\leq 5(4x-12)\\-4x-12 &\leq 20x-60\\ -24x & \leq-48\\x & \geq 2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/wnz1yw1a3n4yznq0e4ug1itz483iucblz7.png)
When graphing inequalities on a number line:
- < or > : open circle.
- ≤ or ≥ : closed circle.
- < or ≤ : shade to the left of the circle.
- > or ≥ : shade to the right of the circle.
To graph the solution to the inequality on number line, place a closed circle at x = 2 and shade to the right. (See attachment).