145k views
1 vote

\rm \int_(-\infty)^0√(1+2^2)e^(2\theta)d\theta=\phi-\frac12\\

User MaxiNet
by
5.2k points

1 Answer

1 vote

Nothing tricky here:


\displaystyle \int_(-\infty)^0 √(1+2^2) \, e^(2\theta) \, d\theta = \sqrt5 \int_(-\infty)^0 e^(2\theta) \, d \theta \\\\ ~~~~~~~~ = \frac{\sqrt5}2 \left(e^0 - \lim_(\theta\to-\infty) e^(2\theta)\right) \\\\ ~~~~~~~~ = \frac{\sqrt5}2

Recall that


\phi = \frac{1+\sqrt5}2

and this is exactly 1/2 more than the value of the integral.

User Vel Genov
by
4.7k points