139k views
4 votes
Please I need help with this

Determine dy/dx if
y^3-x^2=y^2-5x

1 Answer

6 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \:(dy)/(dx) = (2x - 5)/(3y² - 2y)

____________________________________


\large \tt Solution \: :


\qquad \tt \rightarrow \: {y}^(3) - {x}^(2) = {y}^(2) - 5x

[ take derivative with respect to x, on both sides of the equality ]


\qquad \tt \rightarrow \: (d)/(dx) ( {y}^(3) - {x}^(2) ) = (d)/(dx) ( {y}^(2) - 5x)


\qquad \tt \rightarrow \: (d)/(dx) ( {y}^(3)) - (d)/(dx) ({x}^(2) ) = (d)/(dx) ( {y}^(2)) - (d)/(dx) (5x)


\qquad \tt \rightarrow \: 3 {y}^(2) \sdot (dy)/(dx) - 2x = 2y \sdot (dy)/(dx) - 5

[ By chain rule ]


\qquad \tt \rightarrow \: 3 {y}^(2) \sdot (dy)/(dx) - 2y \sdot (dy)/(dx) = 2x - 5

[ take dy/dx common out ]


\qquad \tt \rightarrow \: (dy)/(dx) (3 {y}^(2) - 2y)= 2x - 5


\qquad \tt \rightarrow \: (dy)/(dx) = \frac{ 2x - 5}{3 {y}^(2) - 2y}

I hope you understood the whole procedure, let me know if you have any problem regarding the steps !

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Stenerson
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories