139k views
4 votes
Please I need help with this

Determine dy/dx if
y^3-x^2=y^2-5x

1 Answer

6 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \:(dy)/(dx) = (2x - 5)/(3y² - 2y)

____________________________________


\large \tt Solution \: :


\qquad \tt \rightarrow \: {y}^(3) - {x}^(2) = {y}^(2) - 5x

[ take derivative with respect to x, on both sides of the equality ]


\qquad \tt \rightarrow \: (d)/(dx) ( {y}^(3) - {x}^(2) ) = (d)/(dx) ( {y}^(2) - 5x)


\qquad \tt \rightarrow \: (d)/(dx) ( {y}^(3)) - (d)/(dx) ({x}^(2) ) = (d)/(dx) ( {y}^(2)) - (d)/(dx) (5x)


\qquad \tt \rightarrow \: 3 {y}^(2) \sdot (dy)/(dx) - 2x = 2y \sdot (dy)/(dx) - 5

[ By chain rule ]


\qquad \tt \rightarrow \: 3 {y}^(2) \sdot (dy)/(dx) - 2y \sdot (dy)/(dx) = 2x - 5

[ take dy/dx common out ]


\qquad \tt \rightarrow \: (dy)/(dx) (3 {y}^(2) - 2y)= 2x - 5


\qquad \tt \rightarrow \: (dy)/(dx) = \frac{ 2x - 5}{3 {y}^(2) - 2y}

I hope you understood the whole procedure, let me know if you have any problem regarding the steps !

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Stenerson
by
4.6k points