169k views
0 votes
Find the first order differential eqn of y
dy/dx = y(x² + 1)​

User DaveP
by
3.5k points

2 Answers

3 votes

Answer:


{ \tt{ (dy)/(dx) = y( {x}^(2) + 1) }} \\

- Simplify by collecting each term according to its corresponding d


{ \tt{ (dy)/(y) = ( {x}^(2) + 1) \: dx}} \\

- Integrate both sides;


{ \tt{ \int (1)/(y) \: dy = \int ( {x}^(2) + 1) \: dx }} \\ \\ { \tt{ ln(y) = (1)/(3) {x}^(3) + x + c }}

- To make y the subject, you must remove the natural log;


{ \tt{ log_(e)(y) = (1)/(3) {x}^(3) + x + c }} \\ \\ { \tt{y = {e}^{( (1)/(3) {x}^(3) + x + c) } }} \\

User AustinT
by
3.4k points
4 votes

Answer:


\large\text{$y=ke^{(1)/(3)x^3+x}$}

Explanation:

Given differential equation:


\large\text{$\frac{\text{d}y}{\text{d}x}=y(x^2+1)$}

Rearrange the equation so that all the terms containing y are on the left side, and all the terms containing x are on the right side:


\large\text{$\implies (1)/(y)\;\text{d}y=(x^2+1)\;\text{d}x$}

Integrate both sides, remembering to add the constant of integration (C):


\large\begin{aligned}\implies \displaystyle \int(1)/(y)\;\text{d}y & =\int(x^2+1)\;\text{d}x\\\ln y & = (1)/(3)x^3+x+\text{C}\end{aligned}

Rewrite C as ln k:


\large\text{$\implies \ln y = (1)/(3)x^3+x+\ln k$}

Solve for y, applying:


  • \textsf{Log rule}: \quad e^(\ln a)=a

  • \textsf{Exponent rule}: \quad \:a^(b+c)=a^ba^c


\large\text{$ \implies e^(\ln y) =e^{(1)/(3)x^3+x+\ln k}$}


\large\text{$ \implies y=e^(\ln k) \cdot e^{(1)/(3)x^3+x}$}


\large\text{$\implies y=ke^{(1)/(3)x^3+x}$}

Integration rules


\boxed{\begin{minipage}{3.6 cm}\underline{Integrating $(1)/(x)$}\\\\$\displaystyle \int (1)/(x)\:\text{d}x=\ln |x|+\text{C}$\end{minipage}}


\boxed{\begin{minipage}{3.6 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=(x^(n+1))/(n+1)+\text{C}$\end{minipage}}


\boxed{\begin{minipage}{5.1 cm}\underline{Integrating a constant}\\\\$\displaystyle \int n\:\text{d}x=nx+\text{C}$\\\\(where $n$ is any constant value) \end{minipage}}

User Nook
by
3.9k points