I don't know what kind of calculator you have at your disposal, so I'll just give one way of computing the sample mean and standard deviation.
• To get the mean, add up all the data points and divide the total by the number of data:
![\bar x = \displaystyle \sum_i \frac{x_i}n = \frac{1243+1264+\cdots+1275}9 \approx 1273.89 \\ \implies \boxed{\bar x \approx 1274}](https://img.qammunity.org/2023/formulas/mathematics/college/aakh44ynyqig36hfbh0bz8ojc02lkad65w.png)
• To get the s.d. s, first compute the variance s² by adding up the squared difference between each of the data points and the sample mean, and divide the total by 1 less than the number of data:
![s^2 = \displaystyle \sum_i (\left(x_i-\bar x\right)^2)/(n-1) = \frac{(1243-1274)^2+(1264-1274)^2+\cdots+(1275-1274)^2}8 \approx 1211.61](https://img.qammunity.org/2023/formulas/mathematics/college/l0sgx01fhtpbl5iv2rlnsbhvgdwinq667q.png)
The s.d. is the square root of the variance:
![s^2 \approx 1211.61 \implies s \approx 34.8082 \implies \boxed{s\approx 35}](https://img.qammunity.org/2023/formulas/mathematics/college/qgh7gr10pf0834m9hie44xsz3d0e1wy5ap.png)
The 90% confidence interval for the sample mean has upper and lower limits, respectively, of
![\bar x \pm (\left|Z_(\alpha/2)\right| s)/(\sqrt n)](https://img.qammunity.org/2023/formulas/mathematics/college/1ml6s02dhcynpw9cvhj9hp1js2go67nbc5.png)
(positive root for upper limit, negative root for lower limit)
where
is the critical value for a (1 - α)×100% confidence level. By critical value, I mean
![\mathrm{Pr}\left[ Z \le Z_c \right] = c](https://img.qammunity.org/2023/formulas/mathematics/college/5jta9tz1lpxo26sz38w3wyo71b04fv2l90.png)
where Z is a random variable following the standard normal distribution.
In this case, we have a 90% confidence level, so α = 0.1, and the critical value is
. Then the confidence interval has upper limit
![\bar x + (\left|Z_(0.05)\right|s)/(\sqrt n) = 1274 + (1.64 * 35)/(\sqrt9) \approx 1292.97 \approx \boxed{1293}](https://img.qammunity.org/2023/formulas/mathematics/college/trroenrgfp4rf13c3yi7ivadw8v303ur2v.png)
and lower limit
![\bar x - (\left|Z_(0.05)\right|s)/(\sqrt n) = 1274 - (1.64 * 35)/(\sqrt9) \approx 1254.8 \approx \boxed{1255}](https://img.qammunity.org/2023/formulas/mathematics/college/t03633mo4vxvr12lr0f6jl64s8u3fhmooo.png)