36.3k views
1 vote
Hi can someone help me here​

Hi can someone help me here​-example-1
User Tturbo
by
7.2k points

1 Answer

1 vote

Answer:


\textsf{1.} \quad x^2-2x-1


\textsf{2.} \quad -3x^4-5x^3+14x^2+20x-8


\textsf{3.} \quad -(5)/(2)

Explanation:

Given functions:


\begin{cases}f(x) = x^2 - 4\\g(x) = x + 2\\h(x) = -3x + 1\end{cases}

Question 1

The composite function (f + g - h)(x) means to add functions f(x) and g(x) then subtract function h(x):


\begin{aligned}(f+g-h)(x) & = f(x)+g(x)-h(x)\\& = (x^2-4)+(x+2)-(-3x+1)\\& = x^2-4+x+2+3x-1\\& = x^2+3x+x-4+2-1\\& = x^2+4x-3\end{aligned}

Question 2

The composite function (fgh)(x) means to multiply functions f(x), g(x) and h(x):


\begin{aligned}(fgh)(x) & = f(x)\cdot g(x) \cdot h(x)\\& = (x^2-4)(x+2)(-3x+1)\\& = (x^2-4)(-3x^2-5x+2)\\& = -3x^4-5x^3+2x^2+12x^2+20x-8\\& = -3x^4-5x^3+14x^2+20x-8\end{aligned}

Question 3

The composite function (f/g)(h)(1/2) means to substitute the value of function h(x) when x = 1/2 into function f(x) and function g(x) and divide the former by the latter:


\begin{aligned}\left((f)/(g)\right)(h)\left((1)/(2)\right) & = (f\left(h\left((1)/(2)\right)\right))/(g\left(h\left((1)/(2)\right)\right))\\\\& = (f\left(-3\left((1)/(2)\right)+1\right))/(g\left(-3\left((1)/(2)\right)+1\right))\\\\& = (f\left(-(1)/(2)\right))/(g\left(-(1)/(2)\right))\\\\& = (\left(-(1)/(2)\right)^2-4)/(\left(-(1)/(2)\right)+2)\\\\& = (-(15)/(4))/((3)/(2))\\\\& = -(5)/(2)\end{aligned}

User Serhii Shliakhov
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories