Answer:
62.15 mi/hr
Explanation:
Given:
As both speed limits are given "per hour", we only need to convert 100 km to miles. To do this, set up and solve a ratio for "miles to kilometers", where x is the number of miles to 100 km:
![\implies \sf 1 : 1.609 = x : 100](https://img.qammunity.org/2023/formulas/mathematics/college/o9k4ci2kdute240obiqa2wm7lx8hbn3v39.png)
![\implies \sf (1)/(1.609) = (x)/(100)](https://img.qammunity.org/2023/formulas/mathematics/college/5glidfqh8hf4zq78rjc6kpm81mgmjnz5tm.png)
![\implies \sf (1)/(1.609) \cdot 100= x](https://img.qammunity.org/2023/formulas/mathematics/college/8k80g8cxqaw49cgczerotr6qx3j383eaa6.png)
![\implies \sf x= (100)/(1.609)](https://img.qammunity.org/2023/formulas/mathematics/college/v8ybd3anwhw4piz2zaxjj4rl4n9sdx013y.png)
![\implies \sf x= 62.15040398...](https://img.qammunity.org/2023/formulas/mathematics/college/r4jlbzmp861rtobbtm0bzl238joy28sxqs.png)
Therefore, 100 km/hr = 62.15 mi/hr (2 d.p.)