Answer:
For this problem, x has multiple values, so we will solve for both.
Explanation:
![x^2+10x-11=11-11\\x^2+10x-11=0\\](https://img.qammunity.org/2023/formulas/mathematics/college/tf8vqxal0r1duj98wiwy9mjkovspt0b65j.png)
Quadratic rule
![x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/fuvhc9uz200iwn8zn5x4ir7hvbk53w0utk.png)
![\mathrm{For\:} a=1,\:b=10,\:c=-11](https://img.qammunity.org/2023/formulas/mathematics/college/b8xvtcieq2k2mdlyvsd6nzes8xr0thumrh.png)
![x_(1,\:2)=(-10\pm √(10^2-4\cdot \:1\cdot \left(-11\right)))/(2\cdot \:1)](https://img.qammunity.org/2023/formulas/mathematics/college/jatnpshsrrzq25b4z09dpd56x7klm4k90c.png)
Dealing with radicals
![√(10^2-4\cdot \:1\cdot \left(-11\right))\\=√(10^2+4\cdot \:1\cdot \:11)\\=√(10^2+44)\\=√(100+44)\\=√(144)\\=√(12^2)\\=12\\](https://img.qammunity.org/2023/formulas/mathematics/college/irr7iqy3dv3yjaon6n4t4iplksgeea2fm0.png)
Multi-solution expression
![x_1=(-10+12)/(2\cdot \:1),\:x_2=(-10-12)/(2\cdot \:1)](https://img.qammunity.org/2023/formulas/mathematics/college/cdhmtt3q0qmy8mpzdqu0e6kdwc7hy0ngx9.png)
Solve for x₁
![(-10+12)/(2\cdot \:1)\\=(2)/(2\cdot \:1)\\=(2)/(2)\\=1](https://img.qammunity.org/2023/formulas/mathematics/college/spotuij0rogvac0uv8rauzqezp7z8fvtiu.png)
Solve for x₂
![(-10-12)/(2\cdot \:1)\\=(-22)/(2\cdot \:1)\\=(-22)/(2)\\= -(22)/(2)\\= -11](https://img.qammunity.org/2023/formulas/mathematics/college/cpxo55g4dh4g8zdl0d3f4m4sw5r3bbf0a4.png)
Thus, x has 2 values for 2 different numbers:
x₁ = 1
x₂ = -11
➲ Hope this helps!