161k views
2 votes
X
x^(2)+ 10x =11

User MayurK
by
7.7k points

1 Answer

2 votes

Answer:

For this problem, x has multiple values, so we will solve for both.

Explanation:


x^2+10x-11=11-11\\x^2+10x-11=0\\

Quadratic rule


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:} a=1,\:b=10,\:c=-11


x_(1,\:2)=(-10\pm √(10^2-4\cdot \:1\cdot \left(-11\right)))/(2\cdot \:1)

Dealing with radicals


√(10^2-4\cdot \:1\cdot \left(-11\right))\\=√(10^2+4\cdot \:1\cdot \:11)\\=√(10^2+44)\\=√(100+44)\\=√(144)\\=√(12^2)\\=12\\

Multi-solution expression


x_1=(-10+12)/(2\cdot \:1),\:x_2=(-10-12)/(2\cdot \:1)

Solve for x₁


(-10+12)/(2\cdot \:1)\\=(2)/(2\cdot \:1)\\=(2)/(2)\\=1

Solve for x₂


(-10-12)/(2\cdot \:1)\\=(-22)/(2\cdot \:1)\\=(-22)/(2)\\= -(22)/(2)\\= -11

Thus, x has 2 values for 2 different numbers:

x₁ = 1

x₂ = -11

➲ Hope this helps!

User Nivekithan
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories