153k views
1 vote
Please answer this question​

Please answer this question​-example-1
User Chanelle
by
8.7k points

2 Answers

4 votes

let x be the real part of z

let y be the imaginary part of z


arg(x +i y - 1) = arg(x + iy + 3i) \\ arg(x - 1 + iy) = arg(x + (y + 3)i) \\ arctan( (y)/(x - 1) ) = arctan( (y + 3)/(x) ) \\ arctan( ( ((y)/(x - 1) ) - ( (y + 3)/(x)) )/(1 +( (y)/(x - 1) )( (y + 3)/(x) )) ) = 0 \\ arctan( ( (xy - (x - 1)(y + 3))/(x(x - 1)) )/( (x(x - 1) + y(y + 3))/(x(x - 1)) ) ) = 0


arctan( \frac{xy - xy - 3x + y + 3}{x {}^(2) - x + y {}^(2) + 3y } ) = 0 \\ \frac{ - 3x + y + 3}{x {}^(2) - x + y {}^(2) + 3y} = tan(0) = 0 \\ - 3x + y + 3 = 0 \\ y = 3x - 3


(x - 1)/(y) = (x - 1)/(3x - 3) = (x - 1)/(3(x - 1)) = (1)/(3) \\

User Grant Sayer
by
7.8k points
2 votes

Answer:


(x-1)/(y)=(1)/(3)

Explanation:

Sums of real and imaginary numbers are known as complex numbers:


\large\boxed{z = x + iy}

(where x is the real number and iy is the imaginary number).

Complex numbers can be represented on an Argand diagram.

  • The x-axis is the real axis.
  • The y-axis is the imaginary axis.

z = x + iy is represented on the diagram by the point P(x, y).


\textsf{Argument of a complex number $= \boxed{\arg z}$}

It is the angle between the positive real axis and the line joining that number to the origin on an Argand diagram, measured in an anticlockwise direction.


\textsf{For \;$z = x + iy$, \;the argument $\theta$ satisfies\; $\tan \theta = (y)/(x)$.}


\textsf{Given: \quad $\arg (z-1)=\arg(z+3i)$}


\textsf{If $z$ is a complex number then $z = x + iy$}.


\textsf{Substitute this into the given equation}:


\begin{aligned} \arg(z-1)&=\arg(z+3i)\\\implies \arg(x + iy - 1) &= \arg(x + iy + 3i)\\\implies \arg((x - 1) + iy) &= \arg(x + i(y + 3))\end{aligned}


\textsf{If the argument $\theta$ satisfies\; $\tan \theta = (y)/(x) \implies \theta=\tan^(-1)\left((y)/(x)\right)$}:


\implies \tan^(-1)\left((y)/(x-1)\right)=\tan^(-1)\left((y+3)/(x)\right)


\implies \tan^(-1)\left((y)/(x-1)\right)-\tan^(-1)\left((y+3)/(x)\right)=0


\boxed{\begin{minipage}{6.2cm}\underline{Trigonometric identity}\\\\ $\tan^(-1)(a)-\tan^(-1)(b)=\tan^(-1)\left((a-b)/(1+ab)\right)$\\ \end{minipage}}

Use the arctan identity:


\implies \tan^(-1)\left(((y)/(x-1)-(y+3)/(x))/(1+\left((y)/(x-1)\right)\left((y+3)/(x)\right)) \right)=0


\implies \tan^(-1)\left(((xy-(y+3)(x-1))/(x(x-1)))/(1+(y(y+3))/(x(x-1))) \right)=0


\implies \tan^(-1)\left(((xy-(y+3)(x-1))/(x(x-1)))/((x(x-1)+y(y+3))/(x(x-1))) \right)=0


\implies \tan^(-1)\left({(xy-(y+3)(x-1))/(x(x-1)+y(y+3)) \right)=0


\implies \tan^(-1)\left({(xy-xy+y-3x+3)/(x^2-x+y^2+3y) \right)=0


\implies \tan^(-1)\left({(y-3x+3)/(x^2-x+y^2+3y) \right)=0


\implies (y-3x+3)/(x^2-x+y^2+3y)=\tan(0)


\implies (y-3x+3)/(x^2-x+y^2+3y)=0


\implies y-3x+3=0


\implies y=3x-3


\textsf{Substitute\;\; $y=3x-3$ \;\;into \;\;$(x-1)/(y)$}:


\begin{aligned}\implies (x-1)/(y)& =(x-1)/(3x-3)\\\\ & =(x-1)/(3(x-1))\\\\ & =(1)/(3)\end{aligned}


\textsf{Therefore, the value of\; $(x-1)/(y)$\; is\; $(1)/(3)$}.

User Maryse
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories