251,560 views
33 votes
33 votes
Q). Show that: tan 75° + cot 75° = 4.​

User Aviro
by
2.6k points

1 Answer

17 votes
17 votes

Explanation:


\large\underline{\sf{Solution-}}

Given expression is


\rm :\longmapsto\:tan75\degree + cot75\degree

Consider


\rm :\longmapsto\:tan75\degree


\rm \:  =  \: tan(45\degree + 30\degree )


\rm \:  =  \: (tan45\degree + tan30\degree )/(1 - tan45\degree * tan30\degree )


\rm \:  =  \: (1 + (1)/( √(3) ) )/(1 - 1 * (1)/( √(3) ) )


\rm \:  =  \: (1 + (1)/( √(3) ) )/(1 - (1)/( √(3) ) )


\rm \:  =  \: ( √(3) + 1 )/( √(3) - 1)

On rationalizing the denominator, we get


\rm \:  =  \: ( √(3) + 1 )/( √(3) - 1) * ( √(3) + 1 )/( √(3) + 1 )


\rm \:  =  \: \frac{ {( √(3) + 1)}^(2) }{ {( √(3)) }^(2) - {(1)}^(2) }


\rm \:  =  \: (3 + 1 + 2 √(3) )/(3 - 1)


\rm \:  =  \: (4+ 2 √(3) )/(2)


\rm \:  =  \: (2(2+ √(3) ))/(2)


\rm \:  =  \: 2 + √(3)


\rm\implies \:\boxed{\tt{ tan75\degree = 2 + √(3) \: }}

Now,


\rm :\longmapsto\:cot75\degree


\rm \:  =  \: (1)/(tan75\degree )


\rm \:  =  \: (1)/(2 + √(3) )

On rationalizing the denominator, we get


\rm \:  =  \: (1)/(2 + √(3) ) * (2 - √(3) )/(2 - √(3) )


\rm \:  =  \: \frac{2 - √(3) }{ {(2)}^(2) - {( √(3)) }^(2) }


\rm \:  =  \: (2 - √(3) )/(4 - 3)


\rm \:  =  \: 2 - √(3)


\bf\implies \:\boxed{\tt{ cot75\degree = 2 - √(3) \: }}

Now, Consider


\rm :\longmapsto\:tan75\degree + cot75\degree


\rm \:  =  \: 2 + √(3) + 2 - √(3)


\rm \:  =  \: 4

Hence,


\rm\implies \:\boxed{\tt{ tan75\degree + cot75\degree = 4 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Alternative Method


\rm :\longmapsto\:tan75\degree + cot75\degree


\rm \:  =  \: tan75\degree + (1)/(tan75\degree )


\rm \:  =  \: \frac{ {tan}^(2)75\degree + 1}{tan75\degree }


\rm \:  =  \: \frac{1}{\frac{tan75\degree }{1 + {tan}^(2) 75\degree } }


\rm \:  =  \: \frac{2}{\frac{2tan75\degree }{1 + {tan}^(2) 75\degree } }

We know,


\rm :\longmapsto\:\boxed{\tt{ \frac{2tanx}{1 + {tan}^(2) x} = sin2x}}


\rm \:  =  \: (2)/(sin150\degree )


\rm \:  =  \: (2)/(sin(180\degree - 30\degree ))


\rm \:  =  \: (2)/(sin30\degree )


\rm \:  =  \: 2 * 2


\rm \:  =  \: 4

Hence,


\rm\implies \:\boxed{\tt{ tan75\degree + cot75\degree = 4 \: }}

User Zuups
by
3.0k points