203k views
4 votes
Find the inverse funtion of p(t)=1+In(t)​

1 Answer

5 votes

Answer:


\mathsf e^(t-1)

Explanation:

Definition of an inverse function



\textsf {A\:function\:g\:is\:the\:inverse\:of\:function\:f\:if\:for}\:y=f\left(x\right),\:\:x=g\left(y\right)\:

In order to find the inverse of p(t) = 1 + ln(t)...

  • Set y = 1 + ln(t)
  • Replace t with y

    \textsf t=1+\ln \left(y\right)
  • Solve for y

    \textsf 1+\ln \left(y\right)=t
  • Subtract 1 from both sides

    \textsf\ln \left(y\right)=t-1
    \textsf {$\ln \left(y\right)=t-1$}
  • Apply the log rule:
    \mathsf{If}\:\log _a\left(b\right)=c\:\mathsf{then}\:b=a^c

    \ln \left(y\right)=t-1\quad

    \implies y=e^(t-1)




User Zpul
by
3.5k points