29.3k views
18 votes
Im du.mb at this stuff, i dont know how to do it

Im du.mb at this stuff, i dont know how to do it-example-1
User Sarela
by
7.7k points

2 Answers

2 votes

Answer:

the correct answer will be 88

User Freylis
by
7.3k points
8 votes

Answer:

Area of the shaded region 45.76 cm².

Step-by-step Step-by-step explanation:

Firstly, finding the area of rectangle by substituting the values in the formula :


{\longrightarrow{\pmb{\sf{A_((Rectangle)) = l * b}}}}

  • → A = Area
  • → l = length
  • → b = breadth


\begin{gathered} \qquad{\longrightarrow{\sf{A_((Rectangle)) = l * b}}}\\\\\qquad{\longrightarrow{\sf{A_((Rectangle)) = 12* 8}}}\\\\\qquad{\longrightarrow{\sf{A_((Rectangle)) = 96}}}\\\\\qquad{\star{\boxed{\sf{\pink{A_((Rectangle)) = 96 \: {cm}^(2)}}}}} \end{gathered}

Hence, the area of rectangle is 96 cm².


\rule{200}2

Secondly, finding the area of circle by substituting the values in the formula :


{\longrightarrow{\pmb{\sf{A_((Circle)) = \pi{r}^(2)}}}}

  • → A = Area
  • → π = 3.14
  • → r = radius


\begin{gathered} \qquad{\longrightarrow{\sf{A_((Circle)) = \pi{r}^(2)}}} \\ \\ \qquad{\longrightarrow{\sf{A_((Circle)) = 3.14{(4)}^(2)}}} \\ \\ \qquad{\longrightarrow{\sf{A_((Circle)) = 3.14{(4* 4)}}}} \\ \\ \qquad{\longrightarrow{\sf{A_((Circle)) = 3.14(16)}}} \\ \\ \qquad{\longrightarrow{\sf{A_((Circle)) = 3.14 * 16}}} \\ \\ \qquad{\longrightarrow{\sf{A_((Circle)) \approx 50.24}}} \\ \\ \qquad{\star{\boxed{\sf{\purple{A_((Circle)) \approx 50.24 \: {cm}^(2)}}}}} \end{gathered}

Hence, the area of circle is 50.24 cm².


\rule{200}2

Now, finding the area of shaded region by substituting the values in the formula :


\longrightarrow{\pmb{\sf{A_((Shaded)) = A_((Rectangle)) - A_((Circle))}}}

  • → A = Area
  • → Rectangle
  • → Circle


\begin{gathered}{\quad{\longrightarrow{\sf{A_((Shaded)) = A_((Rectangle)) - A_((Circle))}}}}\\\\{\quad{\longrightarrow{\sf{A_((Shaded)) = 96 - 50.24}}}}\\\\{\quad{\longrightarrow{\sf{A_((Shaded)) \approx 45.76}}}}\\\\{\quad{\star{\boxed{\sf{\red{A_((Shaded)) \approx 45.76 \: {cm}^(2)}}}}}} \end{gathered}

Hence, the area of shaded region is 45.76 cm².


\rule{300}{2.5}

User Romowski
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories