53.6k views
0 votes
Write an explicit and a recursive formula for each sequence.

41. 2, 4, 6, 8, 10....
42. 0, 6, 12, 18, 24,...
43.-5.-4,-3,-2.-1...
44. -4,-8,-12,-16, -20,...
45. - 5,-3.5,-2,-0.5,1,...
46.-32,-20,-8, 4, 16, ...
47. 1,11/3,12/3,2,...
48. 0,1/8,1/4,3/8,...
49. 27, 15, 3,-9, -21....​

2 Answers

3 votes

Answer:

41. 12, 14

42. 30, 36

43. 0, 1

44. -24, -28

45. 2.5 , 4

46.

47.

48.

49. 63 , 189

Explanation:

I don't know answers to 46 , 47 , 48

please make my answer as brainelist

User Wenbo
by
8.2k points
3 votes

Answer:

Hello,

Explanation:

41)


2,4,6,8,10,...\\\\u_0=2 , u_(n+1)=u_n+2\\\\u_n=2*n+2\\\\

42)


0,6,12,18,24,...\\\\u_0=0 , u_(n+1)=u_n+6\\\\u_n=6*n+0\\\\

43)


-5,-4,-3,-2,-1,...\\\\u_0=-5 , u_(n+1)=u_n+1\\\\u_n=1*n-5=n-5\\\\

44)


-4,-8,-12,-16,-20,...\\\\u_0=-4 , u_(n+1)=u_n-4\\\\u_n=-4*n-4\\\\

45)


-5,-3.5,-2,-0.5,1,...\\\\u_0=-5 , u_(n+1)=u_n+1.5\\\\u_n=1.5*n-5\\\\

46)


-32,-20,-8,4,16,...\\\\u_0=-32 , u_(n+1)=u_n+8\\\\u_n=8*n-32\\\\

48)


0,(1)/(8),(2)/(8),(3)/(8),...\\\\u_0=0 , u_(n+1)=u_n+(1)/(8)\\\\u_n=(1)/(8)*n+0\\\\

49)


27,15,3,-9,-21,...\\\\u_0=27 , u_(n+1)=u_n-12\\\\u_n=-12*n+27\\\\

47) be carefull this is not a arithmetic sequence but a quadratic.

I show you the general method.


\begin{array}cx&\Delta_1&\Delta_2&\Delta_3\\--&--&--&--\\1&.&.&.\\&&&\\(11)/(3) &(8)/(3) &.&.\\&&&\\4 &(1)/(3)&(-7)/(3) &.\\&&&\\2 &-2 &(-7)/(3)&0\\&&&\\--&--&--&--\\\end {array} \\\\Since\ \Delta_3\ is\ null,\ u_n=a*n^2+b*n+c\ has\ for\ degree\ 2.\\


\begin {array} cn&u_n&equation&\\--&--&-----&\\0&1&=a*0+b*0+c &c=1\\1&(11)/(3)&=a*1+b*1+c&a+b=(8)/(3) \\2&4&=a*4+b*2+c&4a+2b=3\\\end {array}\\\\\\\left\{\begin {array} {ccc}4a+2b&=&3\\a+b&=&(8)/(3)\\\end {array} \right.\\\\\\\left\{\begin {array} {ccc}a&=&(-7)/(6)\\\\b&=&(23)/(6)\\\\c&=&1\\\\\end {array} \right.\\\\\\\boxed{u_n=(-7)/(6)*n^2+(23)/(6)*n+1} \\


u_n=(-7)/(6)*n^2+(23)/(6)*n+1}\\\\u_(n+1)=(-7)/(6)*(n+1)^2+(23)/(6)*(n+1)+1}\\\\u_(n+2)=(-7)/(6)*(n+2)^2+(23)/(6)*(n+2)+1}\\\\\Delta_1(n)=u_(n+1)-u_(n)=(-7)/(6)*(2n+1)+(23)/(6)\\\Delta_1(n+1)=u_(n+2)-u_(n+1)=(-7)/(6)*(2n+3)+(23)/(6)\\\\\Delta_2(n)=\Delta_1(n+1)-\Delta_1(n)=(-7)/(6)*2 \\


\left\{\begin{array}{ccc}u_(n+2)-2u_(n+1)+u_n&=&(-7)/(3) \\\\u_0&=&1\\\\u_1&=&(11)/(3) \end {array} \right.

User SilentKiller
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories