24.0k views
3 votes
If the volume of a cube increases at rate of 3 cm^3/sec what is the rate of increase of the length of its side ?

User Rocking
by
8.5k points

1 Answer

6 votes

Greetings from Brasil...

We know that

V = L³ ⇒ L = ∛V

and

dV/dt = 3cm³/s (volume rate as a function of time)

Let

dL/dV = L' = 1/(3∛V²)

We need dL/dt (side rate as a function of time), so

(dV/dt) . (dL/dV) = dL/dt

then

dL/dt = 3 . [1/(3∛V²)]

dL/dt = 1/∛V²

If the volume of a cube increases at rate of 3 cm^3/sec what is the rate of increase-example-1
User LTEHUB
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories