196k views
0 votes
Find the focus and the directrix for the parabola with the given equation.

Find the focus and the directrix for the parabola with the given equation.-example-1

1 Answer

7 votes

Answer:


\mathrm{Focus:\;\;} \left(-(5)/(3),\:2\right)


\mathrm{Directrix:\;\;}x=-(1)/(3)

Explanation:

The standard equation for a parabola is


4p\left(x-h\right)=\left(y-k\right)^2

with vertex at (h, k) and a focal length of |p|


\mathrm{Rewrite}\:x=-(3)/(8)\left(y-2\right)^2-1\:\mathrm{in\:the\:standard\:form}:


\mathrm{Add\:}1\mathrm{\:to\:both\:sides}


x+1=-(3)/(8)\left(y-2\right)^2-1+1 or


x+1=-(3)/(8)\left(y-2\right)^2


\mathrm{Divide\:both\:sides\:by\:}-(3)/(8)

(x+1)/(-(3)/(8))=(-(3)/(8)\left(y-2\right)^2)/(-(3)/(8))


\mathrm{Simplify}

-(8x)/(3)-(8)/(3)=\left(y-2\right)^2


\mathrm{Factor\:}-(8)/(3)

\left(-(8)/(3)\right)\left(x+(-(8)/(3))/(-(8)/(3))\right)=\left(y-2\right)^2


\mathrm{Simplify}

\left(-(8)/(3)\right)\left(x+1\right)=\left(y-2\right)^2


\mathrm{Factor\:}4

4\cdot (-(8)/(3))/(4)\left(x+1\right)=\left(y-2\right)^2


\mathrm{Simplify}

4\left(-(2)/(3)\right)\left(x+1\right)=\left(y-2\right)^2


\mathrm{We\; can\; rewrite\:this\;as}

4\left(-(2)/(3)\right)\left(x-\left(-1\right)\right)=\left(y-2\right)^2

Comparing this with the standard form we get

\left(h,\:k\right)=\left(-1,\:2\right)

\:p=-(2)/(3)

The parabola is symmetric around the x-axis.

The focus lies a distance
p from the center
\left(-1,\:2\right) along the x axis

So focus is at

\left(-1+p,\:2\right)
=\left(-1+\left(-(2)/(3)\right),\:2\right)
=\bold{ \left(-(5)/(3),\:2\right)}

The parabola is symmetric around the x-axis and so the directrix is a line parallel to the y-axis at a distance -p from the center


x=-1-p


x=-1-\left(-(2)/(3)\right) = \bold{-(1)/(3)}

User Cyupa
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories