195k views
0 votes
Find the focus and the directrix for the parabola with the given equation.

Find the focus and the directrix for the parabola with the given equation.-example-1

1 Answer

7 votes

Answer:


\mathrm{Focus:\;\;} \left(-(5)/(3),\:2\right)


\mathrm{Directrix:\;\;}x=-(1)/(3)

Explanation:

The standard equation for a parabola is


4p\left(x-h\right)=\left(y-k\right)^2

with vertex at (h, k) and a focal length of |p|


\mathrm{Rewrite}\:x=-(3)/(8)\left(y-2\right)^2-1\:\mathrm{in\:the\:standard\:form}:


\mathrm{Add\:}1\mathrm{\:to\:both\:sides}


x+1=-(3)/(8)\left(y-2\right)^2-1+1 or


x+1=-(3)/(8)\left(y-2\right)^2


\mathrm{Divide\:both\:sides\:by\:}-(3)/(8)

(x+1)/(-(3)/(8))=(-(3)/(8)\left(y-2\right)^2)/(-(3)/(8))


\mathrm{Simplify}

-(8x)/(3)-(8)/(3)=\left(y-2\right)^2


\mathrm{Factor\:}-(8)/(3)

\left(-(8)/(3)\right)\left(x+(-(8)/(3))/(-(8)/(3))\right)=\left(y-2\right)^2


\mathrm{Simplify}

\left(-(8)/(3)\right)\left(x+1\right)=\left(y-2\right)^2


\mathrm{Factor\:}4

4\cdot (-(8)/(3))/(4)\left(x+1\right)=\left(y-2\right)^2


\mathrm{Simplify}

4\left(-(2)/(3)\right)\left(x+1\right)=\left(y-2\right)^2


\mathrm{We\; can\; rewrite\:this\;as}

4\left(-(2)/(3)\right)\left(x-\left(-1\right)\right)=\left(y-2\right)^2

Comparing this with the standard form we get

\left(h,\:k\right)=\left(-1,\:2\right)

\:p=-(2)/(3)

The parabola is symmetric around the x-axis.

The focus lies a distance
p from the center
\left(-1,\:2\right) along the x axis

So focus is at

\left(-1+p,\:2\right)
=\left(-1+\left(-(2)/(3)\right),\:2\right)
=\bold{ \left(-(5)/(3),\:2\right)}

The parabola is symmetric around the x-axis and so the directrix is a line parallel to the y-axis at a distance -p from the center


x=-1-p


x=-1-\left(-(2)/(3)\right) = \bold{-(1)/(3)}

User Cyupa
by
8.7k points

No related questions found