227k views
0 votes
Prove that:
( 1 - tan^4 A)cos^4 A = 1 - 2 sin^2 A​

User Tomika
by
4.2k points

2 Answers

3 votes

Answer:

See proof below

Explanation:

Prove
\left(\:1\:-\:tan^4A\right)cos^4A\:=\:1\:-\:2\:sin^2A


\left(1-\tan ^4\left(A\right)\right)\cos ^4\left(A\right) can be expressed in sin, cos terms

Use the trigonometric identity
\tan \left(x\right)=(\sin \left(x\right))/(\cos \left(x\right))


\left(1-\tan ^4\left(A\right)\right)\cos ^4\left(A\right) = \left(1-\left((\sin \left(A\right))/(\cos \left(A\right))\right)^4\right)\cos ^4\left(A\right)


\mathrm{Simplify}\:\left(1-\left((\sin \left(A\right))/(\cos \left(A\right))\right)^4\right)\cos ^4\left(A\right)


\mathrm{Apply\:exponent\:rule}:\quad \left((a)/(b)\right)^c=(a^c)/(b^c)

=
\left(1-(\sin ^4\left(A\right))/(\cos ^4\left(A\right))\right)\cos ^4\left(A\right)

Multiplying the expression in parentheses by
\cos ^4\left(A\right) we get


(\cos ^4\left(A\right)-\sin ^4\left(A\right))/(\cos ^4\left(A\right))\cos ^4\left(A\right)

Cancel the common factor
\cos ^4\left(A\right)

This gives us


\cos ^4\left(A\right)-\sin ^4\left(A\right)

Now,


\sin ^4\left(A\right)=\left(\sin ^2\left(A\right)\right)^2


\cos ^4\left(A\right)=\left(\cos ^2\left(A\right)\right)^2


\:\cos ^4\left(A\right)-\sin ^4\left(A\right) =
\left(\cos ^2\left(A\right)\right)^2-\left(\sin ^2\left(A\right)\right)^2


\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)


\left(\cos ^2\left(A\right)\right)^2-\left(\sin ^2\left(A\right)\right)^2=\left(\cos ^2\left(A\right)+\sin ^2\left(A\right)\right)\left(\cos ^2\left(A\right)-\sin ^2\left(A\right)\right)

=
\cos ^2\left(A\right)-\sin ^2\left(A\right)
\textrm{ since }\cos ^2\left(A\right)+\sin ^2\left(A\right) = 1

Using the fact that
\cos ^2\left(A\right)=1-\sin ^2\left(A\right)

we get


\cos ^2\left(A\right)-\sin ^2\left(A\right) = 1-\sin ^2\left(A\right)-\sin ^2\left(A\right)\\\\= 1-2\sin ^2\left(A\right)

Proved

User Wolfcall
by
4.7k points
3 votes

Here we go ~


{ \qquad\qquad\huge\underline{{\sf Answer}}}


\qquad \sf  \dashrightarrow \: (1 - \tan {}^(4) (a) ) \cos {}^(4) (a)


\qquad \sf  \dashrightarrow \: (1 + \tan {}^(2) (a) )(1 - { \tan}^(2) (a)) \cos {}^(4)(a )

[ a² - b² = (a + b)(a - b) ]


\qquad \sf  \dashrightarrow \: ( \sec {}^(2) (a) )(1 - ( \sec{}^(2) (a) - 1) )\cos {}^(4) (a)

[ sec² a = 1 + tan² a, so : tan² a = sec²a - 1 ]


\qquad \sf  \dashrightarrow \: \bigg( \frac{1}{{}cos^(2) (a)} \bigg)(2 - \sec{}^(2) (a) ) \cos {}^(4) (a)


\qquad \sf  \dashrightarrow \: \bigg(2 - \frac{1}{ \cos {}^(2) (a) } \bigg) \cos {}^(2) (a)


\qquad \sf  \dashrightarrow \: \frac{2 \cos {}^(2) (a) - 1}{ \cos {}^(2) (a) } * \cos {}^(2) (a)


\qquad \sf  \dashrightarrow \: 2 \cos {}^(2) (a) - 1


\qquad \sf  \dashrightarrow \: 2(1 - \sin {}^(2) (a) ) - 1

[ sin²a + cos² a = 1, hence sin²a = 1 - cos²a ]


\qquad \sf  \dashrightarrow \: 2 - 2 \sin {}^(2) (a) - 1


\qquad \sf  \dashrightarrow \: 1 - 2 \sin {}^(2) (a)

User Betomoretti
by
5.0k points