227k views
0 votes
Prove that:
( 1 - tan^4 A)cos^4 A = 1 - 2 sin^2 A​

User Tomika
by
7.9k points

2 Answers

3 votes

Answer:

See proof below

Explanation:

Prove
\left(\:1\:-\:tan^4A\right)cos^4A\:=\:1\:-\:2\:sin^2A


\left(1-\tan ^4\left(A\right)\right)\cos ^4\left(A\right) can be expressed in sin, cos terms

Use the trigonometric identity
\tan \left(x\right)=(\sin \left(x\right))/(\cos \left(x\right))


\left(1-\tan ^4\left(A\right)\right)\cos ^4\left(A\right) = \left(1-\left((\sin \left(A\right))/(\cos \left(A\right))\right)^4\right)\cos ^4\left(A\right)


\mathrm{Simplify}\:\left(1-\left((\sin \left(A\right))/(\cos \left(A\right))\right)^4\right)\cos ^4\left(A\right)


\mathrm{Apply\:exponent\:rule}:\quad \left((a)/(b)\right)^c=(a^c)/(b^c)

=
\left(1-(\sin ^4\left(A\right))/(\cos ^4\left(A\right))\right)\cos ^4\left(A\right)

Multiplying the expression in parentheses by
\cos ^4\left(A\right) we get


(\cos ^4\left(A\right)-\sin ^4\left(A\right))/(\cos ^4\left(A\right))\cos ^4\left(A\right)

Cancel the common factor
\cos ^4\left(A\right)

This gives us


\cos ^4\left(A\right)-\sin ^4\left(A\right)

Now,


\sin ^4\left(A\right)=\left(\sin ^2\left(A\right)\right)^2


\cos ^4\left(A\right)=\left(\cos ^2\left(A\right)\right)^2


\:\cos ^4\left(A\right)-\sin ^4\left(A\right) =
\left(\cos ^2\left(A\right)\right)^2-\left(\sin ^2\left(A\right)\right)^2


\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)


\left(\cos ^2\left(A\right)\right)^2-\left(\sin ^2\left(A\right)\right)^2=\left(\cos ^2\left(A\right)+\sin ^2\left(A\right)\right)\left(\cos ^2\left(A\right)-\sin ^2\left(A\right)\right)

=
\cos ^2\left(A\right)-\sin ^2\left(A\right)
\textrm{ since }\cos ^2\left(A\right)+\sin ^2\left(A\right) = 1

Using the fact that
\cos ^2\left(A\right)=1-\sin ^2\left(A\right)

we get


\cos ^2\left(A\right)-\sin ^2\left(A\right) = 1-\sin ^2\left(A\right)-\sin ^2\left(A\right)\\\\= 1-2\sin ^2\left(A\right)

Proved

User Wolfcall
by
8.1k points
3 votes

Here we go ~


{ \qquad\qquad\huge\underline{{\sf Answer}}}


\qquad \sf  \dashrightarrow \: (1 - \tan {}^(4) (a) ) \cos {}^(4) (a)


\qquad \sf  \dashrightarrow \: (1 + \tan {}^(2) (a) )(1 - { \tan}^(2) (a)) \cos {}^(4)(a )

[ a² - b² = (a + b)(a - b) ]


\qquad \sf  \dashrightarrow \: ( \sec {}^(2) (a) )(1 - ( \sec{}^(2) (a) - 1) )\cos {}^(4) (a)

[ sec² a = 1 + tan² a, so : tan² a = sec²a - 1 ]


\qquad \sf  \dashrightarrow \: \bigg( \frac{1}{{}cos^(2) (a)} \bigg)(2 - \sec{}^(2) (a) ) \cos {}^(4) (a)


\qquad \sf  \dashrightarrow \: \bigg(2 - \frac{1}{ \cos {}^(2) (a) } \bigg) \cos {}^(2) (a)


\qquad \sf  \dashrightarrow \: \frac{2 \cos {}^(2) (a) - 1}{ \cos {}^(2) (a) } * \cos {}^(2) (a)


\qquad \sf  \dashrightarrow \: 2 \cos {}^(2) (a) - 1


\qquad \sf  \dashrightarrow \: 2(1 - \sin {}^(2) (a) ) - 1

[ sin²a + cos² a = 1, hence sin²a = 1 - cos²a ]


\qquad \sf  \dashrightarrow \: 2 - 2 \sin {}^(2) (a) - 1


\qquad \sf  \dashrightarrow \: 1 - 2 \sin {}^(2) (a)

User Betomoretti
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories