82.7k views
0 votes
Find the first 5 terms given the nth term.


\\ \qquad \qquad \large \boxed{ \bf{ \: \: a_n = (- 2)^n \: \: }}

\\

\qquad \sf \red{Need \: the \: exact \: and \: correct} \: \\ \sf \qquad \red{ answer \: and \: solution}.


User Derek O
by
4.2k points

2 Answers

0 votes

Answer:

-2, 4, -8, 16, -32, ...

Explanation:

To find any term given the nth term, simply substitute the value of n into the given nth term equation.

Given nth term equation:


\large \boxed{\rm a_n=(-2)^n}

Therefore, to find the first 5 terms, substitute the values of n of 1 through 5 into the nth term equation, remembering to apply the following exponent rules:


\rm (-a)^n=-a^n, \quad \textsf{if }n \textsf{ is odd}


\rm (-a)^n=a^n, \quad \textsf{if }n \textsf{ is even}

First 5 terms


\rm a_1=(-2)^1=-2


\rm a_2=(-2)^2=4


\rm a_3=(-2)^3=-8


\rm a_4=(-2)^4=16


\rm a_5=(-2)^5=-32

User Chirayu Chamoli
by
4.4k points
3 votes

Answer:

  • -2,4,-8,16,-32

Explanation:

let's understanding the question situation,

we have to find the first 5 terms given the nth term.

According to the question,

The given term is


\\ \qquad \qquad \large \boxed{ \sf{ \: \: a_n = (- 2)^n \: \: }}

Solution:-


  • { \sf{ \: \: a_(1) = (- 2)^(1)=\bold{-2} \: \: }}


  • { \sf{ \: \: a_(2) = (- 2)^(2)=\bold{4} \: \: }}


  • { \sf{ \: \: a_(3) = (- 2)^(3)=\bold{-8} \: \: }}


  • { \sf{ \: \: a_(4) = (- 2)^(4)=\bold{16} \: \: }}


  • { \sf{ \: \: a_(5) = (- 2)^(5)=\bold{-32} \: \: }}

Final answer:-

.°. The First 5term is -2,4,-8,16,-32.

User Drunknbass
by
4.3k points