Answer:
∠EFG = 68°
∠GFH = 112°
Step-by-step explanation:
Linear pair: Two adjacent angles that sum to 180° (two angles which when combined together form a straight line).
Therefore, if ∠EFG and ∠GFH are a linear pair, their sum is 180°.
⇒ ∠EFG + ∠GFH = 180°
⇒ (3n + 17) + (5n + 27) = 180
⇒ 3n + 17 + 5n + 27 = 180
⇒ 3n + 5n + 17 + 27 = 180
⇒ 8n + 44 = 180
⇒ 8n + 44 - 44 = 180 - 44
⇒ 8n = 136
⇒ 8n ÷ 8 = 136 ÷ 8
⇒ n = 17
To find the measures of ∠EFG and ∠GFH, substitute the found value of n into the expression for each angle:
⇒ ∠EFG = 3(17) + 17 = 68°
⇒ ∠GFH = 5(17) + 27 = 112°
Check by adding them together:
⇒ ∠EFG + ∠GFH = 68° + 112° = 180°
This confirms that the two angles are a linear pair.