206k views
3 votes
Please help me, im stuck on this question

Please help me, im stuck on this question-example-1

2 Answers

6 votes

Answer:

Part a.

i. -20.6(m/s).

ii. -19.16(m/s).

iii. -19.016(m/s).

Part b.

-19m/s.

Explanation:

Let's refer to the average velocity formula:


A_v=(P_2-P_1)/(t_2-t_1); where
P_2 and
P_1 are the final position, and initial position, respectively. Also,
t_2 and
t_1 are the final time, and initial time, respectively.

For part (i).

1. Find
P_1 and
P_2.


P_1=45(2)-16(2)^2=26\\ \\P_2=45(2.1)-16(2.1)^2=23.94

2. Calculate average velocity.


A_v=(P_2-P_1)/(t_2-t_1)=(23.94m-26m)/(2.1s-2s) =-20.6m/s.

--------------------------------------------------------------------------------------------------

For part (ii).

1. Find
P_1 and
P_2.


P_1=45(2)-16(2)^2=26\\ \\P_2=45(2.01)-16(2.01)^2=25.8084

2. Calculate average velocity.


A_v=(P_2-P_1)/(t_2-t_1)=(25.8084m-26m)/(2.01s-2s) =-19.16m/s.

--------------------------------------------------------------------------------------------------

For part (iii).

1. Find
P_1 and
P_2.


P_1=45(2)-16(2)^2=26\\ \\P_2=45(2.001)-16(2.001)^2= 25.980984

2. Calculate average velocity.


A_v=(P_2-P_1)/(t_2-t_1)=(25.980984m-26m)/(2.001s-2s) =-19.016m/s.

--------------------------------------------------------------------------------------------------

For part b.

Formula of instantaneous velocity:


V_I=(dx)/(dt) .

The instantaneous velocity indicates that we need to find the derivative with respect to time (t) of the position equation, and evaluate it for the indicated time. Let's do that:


y'=(1)45t^(1-1) -(2)16t^(2-1) \\ \\y'=45-32t

Now, we evaluate for the indicated time (t= 2).


y'=45-32(2)=-19m/s.

Hence, the instantaneous velocity for t= 2 is -19m/s.

User JellyBelly
by
8.3k points
4 votes

Answer:

a) i) -20.6 ft/s

ii) -19.16 ft/s

iii) -19.016 ft/s

b) -19 ft/s

Explanation:

Given information:

  • Height: s(t) = 45t - 16t²


\boxed{\begin{minipage}{4 cm}\underline{Average velocity formula}\\\\ $\overline{v}=(s(t_2)-s(t_1))/(t_2-t_1)$\\\end{minipage}}

where:

  • t₁ = initial time
  • t₂ = final time
  • s(t₁) = position function at t₁
  • s(t₂) = position function at t₂

Part (a)

Question (i)

Given interval: [2, 2.1]


\implies t_1=2


\implies t_2=2.1


\implies s(t_1)=45(2)-16(2)^2=26


\implies s(t_2)=45(2.1)-16(2.1)^2=23.94

Substitute the values into the formula and solve for v:


\begin{aligned}\overline{v} & =(s(t_2)-s(t_1))/(t_2-t_1)\\\\\implies \overline{v} & =(s(2.1)-s(2))/(2.1-2)\\\\& =(23.94-26)/(2.1-2)\\\\& =(-2.06)/(0.1)\\\\& =-20.6\:\: \sf ft/s\end{aligned}

Question (ii)

Given interval: [2, 2.01]


\implies t_1=2


\implies t_2=2.01


\implies s(t_1)=45(2)-16(2)^2=26


\implies s(t_2)=45(2.01)-16(2.01)^2=25.8084

Substitute the values into the formula and solve for v:


\begin{aligned}\overline{v} & =(s(t_2)-s(t_1))/(t_2-t_1)\\\\\implies \overline{v} & =(s(2.01)-s(2))/(2.01-2)\\\\& =(25.8084-26)/(2.01-2)\\\\& =(-0.1916)/(0.01)\\\\& =-19.16\:\: \sf ft/s\end{aligned}

Question (iii)

Given interval: [2, 2.001]


\implies t_1=2


\implies t_2=2.001


\implies s(t_1)=45(2)-16(2)^2=26


\implies s(t_2)=45(2.001)-16(2.001)^2=25.980984

Substitute the values into the formula and solve for v:


\begin{aligned}\overline{v} & =(s(t_2)-s(t_1))/(t_2-t_1)\\\\\implies \overline{v} & =(s(2.001)-s(2))/(2.001-2)\\\\& =(25.980984-26)/(2.001-2)\\\\& =(-0.019016)/(0.001)\\\\& =-19.016\:\: \sf ft/s\end{aligned}

Part (b)


\boxed{\begin{minipage}{5cm}\underline{Instantaneous velocity formula}\\\\$v_i=\lim_(\triangle t \to 0) \frac{\text{d}s}{\text{d}t}$\end{minipage}}

To find the equation for instantaneous velocity, differentiate the function for height:


\begin{aligned}s(t) & =45t-16t^2\\\implies \frac{\text{d}s}{\text{d}t} & = 1 \cdot 45t^(1-1) - 2 \cdot 16t^(2-1)\\v_i& = 45-32t\end{aligned}

To find the instantaneous velocity when t = 2, substitute t = 2 into the found instantaneous velocity equation:


\begin{aligned}v_i & =45-32(t)\\t=2\implies v_i & = 45-32(2)\\& = 45-64\\& = -19\:\: \sf ft/s\end{aligned}


\boxed{\begin{minipage}{4.8 cm}\underline{Differentiating $ax^n$}\\\\If $y=ax^n$, then $\frac{\text{d}y}{\text{d}x}=nax^(n-1)$\\\end{minipage}}

User Afsun Khammadli
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories