206k views
3 votes
Please help me, im stuck on this question

Please help me, im stuck on this question-example-1

2 Answers

6 votes

Answer:

Part a.

i. -20.6(m/s).

ii. -19.16(m/s).

iii. -19.016(m/s).

Part b.

-19m/s.

Explanation:

Let's refer to the average velocity formula:


A_v=(P_2-P_1)/(t_2-t_1); where
P_2 and
P_1 are the final position, and initial position, respectively. Also,
t_2 and
t_1 are the final time, and initial time, respectively.

For part (i).

1. Find
P_1 and
P_2.


P_1=45(2)-16(2)^2=26\\ \\P_2=45(2.1)-16(2.1)^2=23.94

2. Calculate average velocity.


A_v=(P_2-P_1)/(t_2-t_1)=(23.94m-26m)/(2.1s-2s) =-20.6m/s.

--------------------------------------------------------------------------------------------------

For part (ii).

1. Find
P_1 and
P_2.


P_1=45(2)-16(2)^2=26\\ \\P_2=45(2.01)-16(2.01)^2=25.8084

2. Calculate average velocity.


A_v=(P_2-P_1)/(t_2-t_1)=(25.8084m-26m)/(2.01s-2s) =-19.16m/s.

--------------------------------------------------------------------------------------------------

For part (iii).

1. Find
P_1 and
P_2.


P_1=45(2)-16(2)^2=26\\ \\P_2=45(2.001)-16(2.001)^2= 25.980984

2. Calculate average velocity.


A_v=(P_2-P_1)/(t_2-t_1)=(25.980984m-26m)/(2.001s-2s) =-19.016m/s.

--------------------------------------------------------------------------------------------------

For part b.

Formula of instantaneous velocity:


V_I=(dx)/(dt) .

The instantaneous velocity indicates that we need to find the derivative with respect to time (t) of the position equation, and evaluate it for the indicated time. Let's do that:


y'=(1)45t^(1-1) -(2)16t^(2-1) \\ \\y'=45-32t

Now, we evaluate for the indicated time (t= 2).


y'=45-32(2)=-19m/s.

Hence, the instantaneous velocity for t= 2 is -19m/s.

User JellyBelly
by
4.4k points
4 votes

Answer:

a) i) -20.6 ft/s

ii) -19.16 ft/s

iii) -19.016 ft/s

b) -19 ft/s

Explanation:

Given information:

  • Height: s(t) = 45t - 16t²


\boxed{\begin{minipage}{4 cm}\underline{Average velocity formula}\\\\ $\overline{v}=(s(t_2)-s(t_1))/(t_2-t_1)$\\\end{minipage}}

where:

  • t₁ = initial time
  • t₂ = final time
  • s(t₁) = position function at t₁
  • s(t₂) = position function at t₂

Part (a)

Question (i)

Given interval: [2, 2.1]


\implies t_1=2


\implies t_2=2.1


\implies s(t_1)=45(2)-16(2)^2=26


\implies s(t_2)=45(2.1)-16(2.1)^2=23.94

Substitute the values into the formula and solve for v:


\begin{aligned}\overline{v} & =(s(t_2)-s(t_1))/(t_2-t_1)\\\\\implies \overline{v} & =(s(2.1)-s(2))/(2.1-2)\\\\& =(23.94-26)/(2.1-2)\\\\& =(-2.06)/(0.1)\\\\& =-20.6\:\: \sf ft/s\end{aligned}

Question (ii)

Given interval: [2, 2.01]


\implies t_1=2


\implies t_2=2.01


\implies s(t_1)=45(2)-16(2)^2=26


\implies s(t_2)=45(2.01)-16(2.01)^2=25.8084

Substitute the values into the formula and solve for v:


\begin{aligned}\overline{v} & =(s(t_2)-s(t_1))/(t_2-t_1)\\\\\implies \overline{v} & =(s(2.01)-s(2))/(2.01-2)\\\\& =(25.8084-26)/(2.01-2)\\\\& =(-0.1916)/(0.01)\\\\& =-19.16\:\: \sf ft/s\end{aligned}

Question (iii)

Given interval: [2, 2.001]


\implies t_1=2


\implies t_2=2.001


\implies s(t_1)=45(2)-16(2)^2=26


\implies s(t_2)=45(2.001)-16(2.001)^2=25.980984

Substitute the values into the formula and solve for v:


\begin{aligned}\overline{v} & =(s(t_2)-s(t_1))/(t_2-t_1)\\\\\implies \overline{v} & =(s(2.001)-s(2))/(2.001-2)\\\\& =(25.980984-26)/(2.001-2)\\\\& =(-0.019016)/(0.001)\\\\& =-19.016\:\: \sf ft/s\end{aligned}

Part (b)


\boxed{\begin{minipage}{5cm}\underline{Instantaneous velocity formula}\\\\$v_i=\lim_(\triangle t \to 0) \frac{\text{d}s}{\text{d}t}$\end{minipage}}

To find the equation for instantaneous velocity, differentiate the function for height:


\begin{aligned}s(t) & =45t-16t^2\\\implies \frac{\text{d}s}{\text{d}t} & = 1 \cdot 45t^(1-1) - 2 \cdot 16t^(2-1)\\v_i& = 45-32t\end{aligned}

To find the instantaneous velocity when t = 2, substitute t = 2 into the found instantaneous velocity equation:


\begin{aligned}v_i & =45-32(t)\\t=2\implies v_i & = 45-32(2)\\& = 45-64\\& = -19\:\: \sf ft/s\end{aligned}


\boxed{\begin{minipage}{4.8 cm}\underline{Differentiating $ax^n$}\\\\If $y=ax^n$, then $\frac{\text{d}y}{\text{d}x}=nax^(n-1)$\\\end{minipage}}

User Afsun Khammadli
by
4.6k points