74,584 views
19 votes
19 votes
By the early 20th century protons and electrons had been discovered.

Describe how knowledge of the numbers of protons and electrons in atoms allow
chemists to place elements in their correct order and correct group.

User Dmudro
by
3.0k points

2 Answers

18 votes
18 votes
The periodic table of the elements is one of the most powerful icons in science: a single document that consolidates much of our knowledge of chemistry. A version hangs on the wall of nearly every chemical laboratory and lecture hall in the world. Indeed, nothing quite like it exists in the other disciplines of science.
The story of the periodic system for classifying the elements can be traced back over 200 years. Throughout its long history, the periodic table has been disputed, altered and improved as science has progressed and as new elements have been discovered [see “Making New Elements,” by Peter Armbruster and Fritz Peter Hessberger]. But despite the dramatic changes that have taken place in science over the past century—namely, the development of the theories of relativity and quantum mechanics—there has been no revolution in the basic nature of the periodic system. In some instances, new findings initially appeared to call into question the theoretical foundations of the periodic table, but each time scientists eventually managed to incorporate the results while preserving the table’s fundamental structure. Remarkably, the periodic table is thus notable both for its historical roots and for its modern relevance.

The term “periodic” reflects the fact that the elements show patterns in their chemical properties in certain regular intervals. Were it not for the simplification provided by this chart, students of chemistry would need to learn the properties of all 112 known elements. Fortunately, the periodic table allows chemists to function by mastering the properties of a handful of typical elements; all the others fall into so-called groups or families with similar chemical properties. (In the modern periodic table, a group or family corresponds to one vertical column.)
The discovery of the periodic system for classifying the elements represents the culmination of a number of scientific developments, rather than a sudden brainstorm on the part of one individual. Yet historians typically consider one event as marking the formal birth of the modern periodic table: on February 17, 1869, a Russian professor of chemistry, Dimitri Ivanovich Mendeleev, completed the first of his numerous periodic charts. It included 63 known elements arranged according to increasing atomic weight; Mendeleev also left spaces for as yet undiscovered elements for which he predicted atomic weights.
Prior to Mendeleev’s discovery, however, other scientists had been actively developing some kind of organizing system to describe the elements. In 1787, for example, French chemist Antoine Lavoisier, working with Antoine Fourcroy, Louis-Bernard Guyton de Morveau and Claude-Louis Berthollet, devised a list of the 33 elements known at the time. Yet such lists are simply onedimensional representations. The power of the modern table lies in its two- or even three-dimensional display of all the known elements (and even the ones yet to be discovered) in a logical system of precisely ordered rows and columns.
In an early attempt to organize the elements into a meaningful array, German chemist Johann Döbereiner pointed out in 1817 that many of the known elements could be arranged by their similarities into groups of three, which he called triads. Döbereiner singled out triads of the elements lithium, sodium and potassium as well as chlorine, bromine and iodine. He noticed that if the three members of a triad were ordered according to their atomic weights, the properties of the middle element fell in between those of the first and third elements. For example, lithium, sodium and potassium all react vigorously with water. But lithium, the lightest of the triad, reacts more mildly than the other two, whereas the heaviest of the three, potassium, explodes violently. In addition, Döbereiner showed that the atomic weight of the middle element is close to the average of the weights for the first and third members of the triad. Döbereiner’s work encouraged others to search for correlations between the chemical properties of the elements and their atomic weights. One of those who pursued the triad approach further during the 19th century was Peter Kremers of Cologne, who suggested that certain elements could belong to two triads placed perpendicularly. Kremers thus broke new ground by comparing elements in two directions, a feature that later proved to be an essential aspect of Mendeleev’s system.
In 1857 French chemist Jean-Baptiste- André Dumas turned away from the idea of triads and focused instead on devising a set of mathematical equations that could account for the increase in atomic weight among several groups of chemically similar elements. But as chemists now recognize, any attempt to establish an organizing pattern based on an element’s atomic weight will not succeed, because atomic weight is not the fundamental property that characterizes each of the elements.
User Sam Porch
by
3.2k points
13 votes
13 votes

Answer:

The modern periodic table lists the elements in order of increasing atomic number; the number of protons in the nucleus of an atom.

hope this helpss

User Infominer
by
3.3k points