100k views
5 votes
If
x = 9 - 4√(5), find the value of
√(x) - (1)/(√(x) ).

1 Answer

3 votes

Observe that


\left(\sqrt x - \frac1{\sqrt x}\right)^2 = \left(\sqrt x\right)^2 - 2\sqrt x\frac1{\sqrt x} + \left(\frac1{\sqrt x}\right)^2 = x - 2 + \frac1x

Now,


x = 9 - 4\sqrt5 \implies \frac1x = \frac1{9-4\sqrt5} = (9 + 4\sqrt5)/(9^2 - \left(4\sqrt5\right)^2) = 9 + 4\sqrt5

so that


\left(\sqrt x - \frac1{\sqrt x}\right)^2 = (9 - 4\sqrt5) - 2 + (9 + 4\sqrt5) = 16


\implies \sqrt x - \frac1{\sqrt x} = \pm√(16) = \pm 4

To decide which is the correct value, we need to examine the sign of
\sqrt x - \frac1{\sqrt x}. It evaluates to 0 if


\sqrt x = \frac1{\sqrt x} \implies x = 1

We have


9 - 4\sqrt5 = √(81) - √(16\cdot5) = √(81) - √(80) > 0

Also,


√(81) - √(64) = 9 - 8 = 1

and
\sqrt x increases as
x increases, which means


0 < 9 - 4\sqrt5 < 1

Therefore for all
0 < x < 1,


\sqrt x - \frac1{\sqrt x} < 0

For example, when
x=\frac14, we get


√(\frac14) - \frac1{√(\frac14)} = \frac1{\sqrt4} - \sqrt4 = \frac12 - 2 = -\frac32 < 0

Then the target expression has a negative sign at the given value of
x :


x = 9-4\sqrt5 \implies \sqrt x - \frac1{\sqrt x} = \boxed{-4}

Alternatively, we can try simplifying
\sqrt x by denesting the radical. Let
a,b,c be non-zero integers (
c>0) such that


√(9 - 4\sqrt5) = a + b\sqrt c

Note that the left side must be positive.

Taking squares on both sides gives


9 - 4\sqrt5 = a^2 + 2ab\sqrt c + b^2c

Let
c=5 and
ab=-2. Then


a^2+5b^2=9 \implies a^2 + 5\left(-\frac2a\right)^2 = 9 \\\\ \implies a^2 + (20)/(a^2) = 9 \\\\ \implies a^4 + 20 = 9a^2 \\\\ \implies a^4 - 9a^2 + 20 = 0 \\\\ \implies (a^2 - 4) (a^2 - 5) = 0 \\\\ \implies a^2 = 4 \text{ or } a^2 = 5


a^2 = 4 \implies 5b^2 = 5 \implies b^2 = 1


a^2 = 5 \implies 5b^2 = 4 \implies b^2 = \frac45

Only the first case leads to integer coefficients. Since
ab=-2, one of
a or
b must be negative. We have


a^2 = 4 \implies a = 2 \text{ or } a = -2

Now if
a=2, then
b=-1, and


√(9 - 4\sqrt5) = 2 - \sqrt5

However,
\sqrt5 > \sqrt4 = 2, so
2-\sqrt5 is negative, so we don't want this.

Instead, if
a=-2, then
b=1, and thus


√(9 - 4\sqrt5) = -2 + \sqrt5

Then our target expression evaluates to


\sqrt x - \frac1{\sqrt x} = -2 + \sqrt5 - \frac1{-2 + \sqrt5} \\\\ ~~~~~~~~~~~~ = -2 + \sqrt5 - (-2 - \sqrt5)/((-2)^2 - \left(\sqrt5\right)^2) \\\\ ~~~~~~~~~~~~ = -2 + \sqrt5 + (2 + \sqrt5)/(4 - 5) \\\\ ~~~~~~~~~~~~ = -2 + \sqrt5 - (2 + \sqrt5) = \boxed{-4}

User T Porter
by
4.1k points