134,095 views
29 votes
29 votes
Find the derivative
f’ (2) if f(x) =3/(x+2)

Find the derivative f’ (2) if f(x) =3/(x+2)-example-1
User Pmiranda
by
2.6k points

1 Answer

13 votes
13 votes

Solving for the Derivative of a Function

Answer:


f'(2) = -(3)/(16)\\

Explanation:

Given:


f(x) = (3)/(x +2)\\

Recall:


\frac{\text{d}}{\text{d}x}f(x) = f'(x)\\


\frac{\text{d}}{\text{d}x}((f(x))/(g(x))) = (f'(x)g(x) -f(x)g'(x))/(g(x)^2)\\

If we want to solve for
f'(2), we must first find how
f'(x) will be defined.


f'(x) = \frac{\text{d}}{\text{d}x}f(x) \\ f'(x) = \frac{\text{d}}{\text{d}x}((3)/(x +2)) \\ f'(x) = (3' \cdot (x +2) -3 \cdot (x +2)')/((x +2)^2) \\ f'(x) = (0(x +2) -3(1))/((x +2)^2) \\ f'(x) = (-3)/((x +2)^2) \\ f'(x) = -(3)/((x +2)^2)

Now we can evaluate
f'(2).


f'(2) = -(3)/((2 +2)^2) \\ f'(2) = -(3)/((4)^2) \\ f'(2) = -(3)/(16)

User Suryanaga
by
2.8k points