106k views
4 votes
X^2 - 6 x + 9 = 4 root(x^2 - 6 x + 6)​

User Qudus
by
7.5k points

2 Answers

0 votes

Answer:

Hello,

Explanation:


x^2-6x+9=4√(x^2-6x+6) \\\\(x-3)^2=4√(x^2-6x+9-3) \\\\(x-3)^2=4√((x-3)^2-3) \\\\Let's\ say\ y=x-3\\\\y^2=4√(y^2-3) \ squaring\\\\y^4=16(y^2-3)\\y^4-16y^2+48=0\\\Delta=16^2-4*48=64=8^2\\y^2=4\ or\ y^2=12\\\\(y-2)(y+2)=0\ or\ (y+2√(3) )(y-2√(3) )=0 \\\\y=2,x=5\ or\\\ y=-2, x=-1\ or\\\ y=-2√(3),x=3-2√(3)\ \\or\ y=2√(3),x=3+2√(3)\\\\

Verifying:


1) if\ x=-1\ then\\a)\ x^2-6x+9=1+6+9=16\\b)\ 4√(x^2-6x+6) =4√(1+6+6) =4√(13):\ False\\\\2)if\ x=5\\a)\ x^2-6x+9=25-30+9=4\\b)\ 4√(x^2-6x+6) =4√(25-30+6) =4√(1)=4:\ True\\


3) if\ x=3-2√(3)\ x^2=21-12√(3) \\a)\ x^2-6x+9=21-12√(3)-18+12√(3)+9=12\\b)\ 4√(x^2-6x+6) =4\sqrt{21-12√(3)-18+12√(3)+6} =4√(9)=12:\ True\\\\\\4) if\ x=3+2√(3)\ x^2=21+12√(3) \\a)\ x^2-6x+9=21+12√(3)-18-12√(3)+9=12\\b)\ 4√(x^2-6x+6) =4\sqrt{21+12√(3)-18-12√(3)+6} =4√(9)=12:\ True\\

Sol={5,3-2√3,3+2√3}

User Danthelion
by
8.0k points
2 votes
Answer

X1= 3-2 root3 x2= 1 x3=5 x4= 3 +2 root 3
First swap the sides then simplify the equation
Collect like terms
Move all the expression to the left to equal 0
Then collect like terms again
Reorder the terms from ^2 to ^4
Factor the expression
Change the signs
Separate into possible cases
Then sold the equation to equal 0
Then check solutions by subbing them in as x
Then you should have 4 perfect answers
X^2 - 6 x + 9 = 4 root(x^2 - 6 x + 6)​-example-1
User Ula
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories