Answer:
A) A[p(t)] = 36πt²
B) 7234.56 square units
Explanation:
Given functions:
![\begin{cases}p(t)=6t \\ A(p)=\pi p^2 \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w2zx2w5g5l7wbo4qb9ftj5r4ic4t7yv5pm.png)
Part A
To find the area of the circle of spilled paint as a function of time, substitute the function p(t) into the given function A(p):
![\begin{aligned}A(p) & = \pi p^2\\\\ \implies A[p(t)] & = \pi [p(t)]^2\\& = \pi (6t)^2\\& = \pi 6^2 t^2\\& = 36\pi t^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xwij63yl7yw1wc2acbmyyu2wv1hm7clhs0.png)
Part B
Given:
Substitute the given values into the equation for A[p(t)] found in part A:
![\begin{aligned}A[p(8)] & = 36\pi t^2\\& = 36 \cdot 3.14 \cdot 8^2\\& = 36 \cdot 3.14 \cdot 64\\& = 113.04 \cdot 64\\& = 7234.56\:\: \sf square\:units\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hnyx7tsxxi0ozck0r0u5ryj0d9w4f4qqfr.png)
Therefore, the area of spilled paint after 8 minutes is 7234.56 square units.