50.0k views
0 votes
Find the value c that makes f(x, y) a continuous function.​

Find the value c that makes f(x, y) a continuous function.​-example-1

1 Answer

0 votes

To ensure continuity at the origin, we need to first show that the limit


\displaystyle \lim_((x,y)\to(0,0)) (x^2+y^2)/(√(x^2+y^2+1) - 1)

exists.

This is easy to do - simplifying
f(x,y), we get


(x^2 + y^2)/(√(x^2 + y^2 + 1) - 1) = ((x^2+y^2) \left(√(x^2 + y^2 + 1) + 1\right))/(\left(√(x^2+y^2+1)\right)^2-1^2) \\\\ ~~~~~~~~~~~~~~~~~~~~~~~~~= ((x^2 + y^2) \left(√(x^2+y^2+1)+1\right))/(x^2+y^2) \\\\ ~~~~~~~~~~~~~~~~~~~~~~~~~= √(x^2 + y^2 + 1) + 1

when
x^2+y^2\\eq0. The simplified form is continuous for all
(x,y)\in\Bbb R^2, so


\displaystyle \lim_((x,y)\to(0,0)) f(x,y) = \lim_((x,y)\to(0,0)) \left(√(x^2+y^2+1) + 1\right) = 2

and we should choose
\boxed{c=2}.

User Umesh Kumhar
by
2.4k points