Answer:
The prism has a volume about 340 cubic centimeters larger than the cone.
Explanation:
Cone
Formulas
![\sf Surface\:area\:of\:a\:cone=\pi r \left(r+√(h^2+r^2)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gi66o08f5q26lkvszvgonvfdm37nxynppz.png)
![\textsf{Volume of a cone}=\sf (1)/(3) \pi r^2 h](https://img.qammunity.org/2023/formulas/mathematics/high-school/8h3o0nsm1hcl3ewxo79867sgtw1nmj7bo3.png)
where:
- r = radius of circular base
- h = height perpendicular to the base
Given:
Substitute the given values into the formulas:
![\begin{aligned}\sf Surface\:area\:of\:cone & =\pi (3) \left(3+√(6^2+3^2)\right)\\ & = 3 \pi \left (3+√(36+9)\right)\\ & = 3\pi (3+√(45))\\ & = 3\pi(3+3√(5))\\ & = 91.5 \:\: \sf cm^2\:(1\:d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yai3p2d2p95rocmjt8i1qcqhx8h17hym3g.png)
![\begin{aligned}\textsf{Volume of cone} & =(1)/(3) \pi (3)^2 (6)\\& = (54)/(3) \pi \\ & = 18 \pi \\ & = 56.5\:\: \sf cm^3 \:(1 \: d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/psbqzj68cydpyb5sroewqrzjtkz6d3l36u.png)
Prism
Formulas
![\textsf{Surface area of a prism}=\textsf{Total area of all the sides}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kt2cc85dzb59ibsv0lwlonc3sr2fkjs6wl.png)
![\textsf{Volume of a prism}=\sf \textsf{Area of base} * height](https://img.qammunity.org/2023/formulas/mathematics/high-school/2f6xzuf0g56q2965nmrhttsjyvpt2g4nwg.png)
![\textsf{Area of a triangle}=\sf (1)/(2) * base * height](https://img.qammunity.org/2023/formulas/mathematics/high-school/m6hkne2ythi8dhs1525f3hvpga2ggvrp4l.png)
![\textsf{Area of a rectangle}=\sf width * length](https://img.qammunity.org/2023/formulas/mathematics/high-school/85fbuw2gu7qwemyd7zpaecvxdrrd63z3zi.png)
Given:
- Height of triangular base = 10 cm
- Base of triangular base = 8 cm
- Height of prism = 10 cm
Find the area of the triangular base of the prism:
![\begin{aligned}\textsf{Area of the base} & = (1)/(2) * 8 * 10\\& = 40\:\: \sf cm^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mgm7277fgvxxig1usj1es8bs8jv61aj5yw.png)
Find the third edge of the triangular base by using Pythagoras Theorem:
![\begin{aligned}a^2+b^2 & = c^2\\\implies 8^2+10^2 & = c^2\\164 & = c^2\\c & = √(164)\\c & = 2√(41)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/10pk058734dcow9gymr5lxg25526so6lgm.png)
Use the found values and the formulas to find the surface area of volume of the prism:
![\begin{aligned}\textsf{Surface area of prism} & = \sf 2\:triangles+3\:rectangles\\& = 2\left(40\right) + (10 * 10)+(10 * 8)+ (10 * 2√(41))\\& = 80 + 100 + 80 + 20√(41)\\& = 388.1 \:\: \sf cm^2\:(1\:d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o6hb4wyv04cbz4bvz6mfkteu7endu871aw.png)
![\begin{aligned}\textsf{Volume of prism} & = 40 * 10\\& = 400\:\:\sf cm^3 \:(1 \:d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pxrayp4tbpyb35ebcf71isov7ro6a9keht.png)
Conclusion
The surface area and volume of the prism is larger than that of the cone.
Difference between surface areas:
388.1 - 91.5 = 296.6 ≈ 300 cm²
Difference between volumes:
400 - 56.5 = 343.5 ≈ 340 cm³
Therefore:
- The prism has a surface area about 300 square centimeters larger than the cone.
- The prism has a volume about 340 cubic centimeters larger than the cone.