102k views
4 votes
Determine the value of y^12 when y= 10^ -1/6​

2 Answers

5 votes


~\hspace{7em}\textit{negative exponents} \\\\ a^(-n) \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^(-n)} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^(-m)\implies a^(n-m) \\\\[-0.35em] ~\dotfill\\\\ y^(12)\hspace{5em}y=10^{-(1)/(6)}\qquad \implies \qquad \left( 10^{-(1)/(6)}\right)^(12)\implies 10^{-(1)/(6)\cdot 12} \\\\\\ 10^(-2)\implies \cfrac{1}{10^2}\implies \cfrac{1}{100}

User Guybrush
by
8.1k points
3 votes

Answer:
\boxed{(1)/(100)\ or\ 0.01}

Explanation:

Determine the value of
y^(12) \ when\ y=10^{-(1)/(6)


=(10^{-(1)/(6) })^(12)


=(1)/(100)\ or\ 0.01

User Kolibril
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories