102k views
4 votes
Determine the value of y^12 when y= 10^ -1/6​

2 Answers

5 votes


~\hspace{7em}\textit{negative exponents} \\\\ a^(-n) \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^(-n)} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^(-m)\implies a^(n-m) \\\\[-0.35em] ~\dotfill\\\\ y^(12)\hspace{5em}y=10^{-(1)/(6)}\qquad \implies \qquad \left( 10^{-(1)/(6)}\right)^(12)\implies 10^{-(1)/(6)\cdot 12} \\\\\\ 10^(-2)\implies \cfrac{1}{10^2}\implies \cfrac{1}{100}

User Guybrush
by
3.2k points
3 votes

Answer:
\boxed{(1)/(100)\ or\ 0.01}

Explanation:

Determine the value of
y^(12) \ when\ y=10^{-(1)/(6)


=(10^{-(1)/(6) })^(12)


=(1)/(100)\ or\ 0.01

User Kolibril
by
3.0k points