172k views
1 vote
Calculus 3 chapter 16​

Calculus 3 chapter 16​-example-1
User Nuncjo
by
7.7k points

1 Answer

5 votes

Evaluate
\vec F at
\vec r :


\vec F(x,y,z) = x\,\vec\imath + y\,\vec\jmath + xy\,\vec k \\\\ \implies \vec F(\vec r(t)) = \vec F(\cos(t), \sin(t), t) = \cos(t)\,\vec\imath + \sin(t)\,\vec\jmath + \sin(t)\cos(t)\,\vec k

Compute the line element
d\vec r :


d\vec r = (d\vec r)/(dt) dt = \left(-\sin(t)\,\vec\imath+\cos(t)\,\vec\jmath+\vec k\bigg) \, dt

Simplifying the integrand, we have


\vec F\cdot d\vec r = \bigg(-\cos(t)\sin(t) + \sin(t)\cos(t) + \sin(t)\cos(t)\bigg) \, dt \\ ~~~~~~~~= \sin(t)\cos(t) \, dt \\\\ ~~~~~~~~= \frac12 \sin(2t) \, dt

Then the line integral evaluates to


\displaystyle \int_C \vec F\cdot d\vec r = \int_0^\pi \frac12\sin(2t)\,dt \\\\ ~~~~~~~~ = -\frac14\cos(2t) \bigg|_(t=0)^(t=\pi) \\\\ ~~~~~~~~ = -\frac14(\cos(2\pi)-\cos(0)) = \boxed{0}

User KpTheConstructor
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories