172k views
1 vote
Calculus 3 chapter 16​

Calculus 3 chapter 16​-example-1
User Nuncjo
by
4.3k points

1 Answer

5 votes

Evaluate
\vec F at
\vec r :


\vec F(x,y,z) = x\,\vec\imath + y\,\vec\jmath + xy\,\vec k \\\\ \implies \vec F(\vec r(t)) = \vec F(\cos(t), \sin(t), t) = \cos(t)\,\vec\imath + \sin(t)\,\vec\jmath + \sin(t)\cos(t)\,\vec k

Compute the line element
d\vec r :


d\vec r = (d\vec r)/(dt) dt = \left(-\sin(t)\,\vec\imath+\cos(t)\,\vec\jmath+\vec k\bigg) \, dt

Simplifying the integrand, we have


\vec F\cdot d\vec r = \bigg(-\cos(t)\sin(t) + \sin(t)\cos(t) + \sin(t)\cos(t)\bigg) \, dt \\ ~~~~~~~~= \sin(t)\cos(t) \, dt \\\\ ~~~~~~~~= \frac12 \sin(2t) \, dt

Then the line integral evaluates to


\displaystyle \int_C \vec F\cdot d\vec r = \int_0^\pi \frac12\sin(2t)\,dt \\\\ ~~~~~~~~ = -\frac14\cos(2t) \bigg|_(t=0)^(t=\pi) \\\\ ~~~~~~~~ = -\frac14(\cos(2\pi)-\cos(0)) = \boxed{0}

User KpTheConstructor
by
4.8k points