458,058 views
29 votes
29 votes
Find the equation of ellipse passing throgh (1,4) and (-3,2)​

User Sproketboy
by
3.1k points

1 Answer

21 votes
21 votes

Answer:


\displaystyle \frac{ {3x}^(2) }{ 35 } + \frac{{2y}^(2) }{ 35 } = 1

Explanation:

we want to figure out the ellipse equation which passes through (1,4) and (-3,2)

the standard form of ellipse equation is given by:


\displaystyle \frac{(x - h {)}^(2) }{ {a}^(2) } + \frac{(y - k {)}^(2) }{ {b}^(2) } = 1

where:

  • (h,k) is the centre
  • a is the horizontal redius
  • b is the vertical radius

since the centre of the equation is not mentioned, we'd assume it (0,0) therefore our equation will be:


\displaystyle \frac{ {x}^(2) }{ {a}^(2) } + \frac{{y}^(2) }{ {b}^(2) } = 1

substituting the value of x and y from the point (1,4),we'd acquire:


\displaystyle \frac{ 1}{ {a}^(2) } + \frac{16}{ {b}^(2) } = 1

similarly using the point (-3,2), we'd obtain:


\displaystyle \frac{ 9}{ {a}^(2) } + \frac{4 }{ {b}^(2) } = 1

let 1/a² and 1/b² be q and p respectively and transform the equation:


\displaystyle \begin{cases} q + 16p = 1 \\ 9q + 4p = 1 \end{cases}

solving the system of linear equation will yield:


\displaystyle \begin{cases} q = (3)/(35) \\ \\ p = (2)/(35) \end{cases}

substitute back:


\displaystyle \begin{cases} \frac{1}{ {a}^(2) } = (3)/(35) \\ \\ \frac{1}{ {b}^(2) } = (2)/(35) \end{cases}

divide both equation by 1 which yields:


\displaystyle \begin{cases} {a}^(2) = (35)/( 3) \\ \\ {b}^(2) = (35)/(2) \end{cases}

substitute the value of a² and b² in the ellipse equation , thus:


\displaystyle \frac{ {x}^(2) }{ (35)/(3) } + \frac{{y}^(2) }{ (35)/(2) } = 1

simplify complex fraction:


\displaystyle \frac{ {3x}^(2) }{ 35 } + \frac{{2y}^(2) }{ 35 } = 1

and we're done!

(refer the attachment as well)

Find the equation of ellipse passing throgh (1,4) and (-3,2)​-example-1
User Joe Eigi
by
3.2k points