83.2k views
2 votes
Evaluate dydx at x=2 for the function below.

y=6u^3+5u+2, where u=−3x^2−4x+9

User Jyasthin
by
4.6k points

1 Answer

1 vote

Explanation:


y = 6u {}^(3) + 5u + 2


y = 6( - 3 {x}^(2) - 4x + 9) {}^(3) + 5( - 3 {x}^(2) - 4x + 9) + 2

Use the chain rule.


(dy)/(dx) = 6(3)( - 3 {x}^(2) - 4x + 9) {}^(2) ( - 6x - 4) + 5( - 6x - 4)


18( - 3 {x}^(2) - 4x + 9) {}^(2) ( - 6x - 4) + 5( - 6x - 4)

Factor out -6x-4,


( - 6x - 4)(18( - 3 {x}^(2) - 4x + 9) {}^(2) + 5)

Know plug in x=-2 to evaluate the derivative


( - 6(2) - 4)(18( - 3(2) {}^(2) - 4(2) + 9) {}^(2) + 5)


( - 16)(18(( - 12) - 8 + 9)) {}^(2) + 5)


- 16(18( - 11) {}^(2) + 5)


- 16(2183)


- 34928

User ZanattMan
by
4.7k points