![\bold{Answer} \downarrow](https://img.qammunity.org/2023/formulas/mathematics/college/deapw9b9ak7pty23jmdalwgmjpvvsvlwye.png)
![Length\ of\ Arc\ ADB = \large\boxed{(68\pi)/(9) }](https://img.qammunity.org/2023/formulas/mathematics/college/behskehloe4gf2o7yfmtorivl2zwphp7ui.png)
![Area\ of\ shaded\ region= \large\boxed{(136\pi)/(9) }](https://img.qammunity.org/2023/formulas/mathematics/college/y7rw1boy6p0i5ax2ig8imxrbxo81f2d3hd.png)
Formulas needed:
![Arc\ length=\boxed{2\pi r((\theta)/(360) )}](https://img.qammunity.org/2023/formulas/mathematics/college/j4eq6nisq2ij4okw9izvda47p54eji34af.png)
![Area \ of\ a\ sector=\boxed{((n)/(360))*\pi * r^2}](https://img.qammunity.org/2023/formulas/mathematics/college/vfpr61fsolc731wlhb2chl92xj1oqr0iee.png)
![Area\ of\ Circle=\boxed {\pi* r^2}](https://img.qammunity.org/2023/formulas/mathematics/college/hdj19noznubc5ol0zsie3pbwlsinj5l07h.png)
Explanation:
First, let's find the arc length:
![Arc\ length=2\pi r((\theta)/(360))](https://img.qammunity.org/2023/formulas/mathematics/college/kne2rf5bhcktlcxt2eumuu5g0s16s351l3.png)
![=2\pi (4)((340)/(360))](https://img.qammunity.org/2023/formulas/mathematics/college/f4ejupq3w0fl0keli2dtinwwel3g8qem0k.png)
![=2\pi (4)((17)/(18))](https://img.qammunity.org/2023/formulas/mathematics/college/7z2d5hfbqnuye9eqv8rt0kbo5iub011w3g.png)
![=2\pi((68)/(18))](https://img.qammunity.org/2023/formulas/mathematics/college/19s9giun9w9w48jgzp524ogv6bw7a33n6h.png)
![=(136\pi )/(18)](https://img.qammunity.org/2023/formulas/mathematics/college/oryhu8h6lekit2ah8fz38pn9hbxrg0vqs0.png)
![\longrightarrow \large\boxed{(68\pi)/(9) }](https://img.qammunity.org/2023/formulas/mathematics/college/uzgi9cot3hcfyq9kzg9omelv4bp3qz2pvy.png)
Next, let's find the area of the sliver of the circle we just found the arc length of.
![Area \ of\ a\ sector=((n)/(360))*\pi * r^2](https://img.qammunity.org/2023/formulas/mathematics/college/68q21h8fw4aet22j4xs2bkcpisaoatjf6h.png)
![=((20)/(360) )* \pi * 4^2](https://img.qammunity.org/2023/formulas/mathematics/college/soo1xfjkotl8s027ia8fiip6ajd47m92tk.png)
![=((1)/(18))* \pi * 16](https://img.qammunity.org/2023/formulas/mathematics/college/6ah5hclq38sk2np78pqze1ft3t1vz5ryfg.png)
![=(16\pi)/(18)](https://img.qammunity.org/2023/formulas/mathematics/college/fu6zl0sxdns3xlqwkzv4l2414oqg7wvwqj.png)
![\longrightarrow (8 \pi)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/71ay82rtnn8cqtt2m9o75g8ld06fdbmsgz.png)
Finally, find the area of the entire circle and subtract the sliver area by that.
![Area\ of\ Circle= {\pi* r^2](https://img.qammunity.org/2023/formulas/mathematics/college/eopzyip796gimca9oluq3gncff9nnvziqq.png)
![=\pi * 4^2](https://img.qammunity.org/2023/formulas/mathematics/college/nysapw0lrbhnuyo1s575xyao84plz84uev.png)
![\longrightarrow16\pi](https://img.qammunity.org/2023/formulas/mathematics/college/wv6m34vs9gb0tljsvn0wluj53ixmh37hu7.png)
Subtracting the area by the sliver.
![Area\ of\ entire\ circle \ -\ Area\ of\ sliver\ of\ circle](https://img.qammunity.org/2023/formulas/mathematics/college/9n43htzt21cukjb9hiqhvh0rggwu9ax5ut.png)
![=16\pi -(8\pi)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/arqj9gi4kobzg62ks2c667fae3qjaxlf9a.png)
![=(144\pi)/(9) -(8\pi )/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/80rrffue9k7w6hbujez5xu9zs0xtpc2q2p.png)
![\longrightarrow \large\boxed{(136\pi)/(9) }](https://img.qammunity.org/2023/formulas/mathematics/college/oppvnpne44p2h6gsar7ql0i8m00xeznrhy.png)