147k views
5 votes
AHHHHHHHHHHHH this is so hard

AHHHHHHHHHHHH this is so hard-example-1
User Argeny
by
4.4k points

2 Answers

6 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Let's solve ~


\qquad \sf  \dashrightarrow \: \cfrac{ {a}^(2) - 64 }{ {a}^(2) - 10a + 24} \sdot \cfrac{ {a}^(2) - 12a + 36 }{ {a}^(2) + 4a - 32}


\qquad \sf  \dashrightarrow \: \cfrac{( {a}^{} + 8)(a - 8) }{ {a}^(2) - 6a - 4a+ 24} \sdot \cfrac{ {a}^(2) - 6a - 6a + 36 }{ {a}^(2) + 8a - 4a- 32}


\qquad \sf  \dashrightarrow \: \cfrac{( {a}^{} + 8)(a - 8) }{ {a}^{} (a - 6) - 4(a - 6)} \sdot \cfrac{ {a}^{} (a - 6) - 6(a - 6) }{ {a}^{}(a + 8) - 4(a + 8)}


\qquad \sf  \dashrightarrow \: \cfrac{( {a}^{} + 8)(a - 8) }{(a - 6) (a -4)} \sdot \cfrac{ (a - 6) (a - 6) }{ {}^{}(a - 4)(a + 8)}


\qquad \sf  \dashrightarrow \: \cfrac{(a - 8) }{(a -4)} \sdot \cfrac{ (a - 6) }{ {}^{}(a - 4)}


\qquad \sf  \dashrightarrow \: \cfrac{(a - 8)(a - 6) }{(a -4) {}^(2) }

Or [ in expanded form ]


\qquad \sf  \dashrightarrow \: \cfrac{ {a}^(2) - 8a - 6a + 48 }{ {a}^(2) - 8a + 16 }


\qquad \sf  \dashrightarrow \: \cfrac{ {a}^(2) -14a + 48 }{ {a}^(2) - 8a + 16 }

User Will Palmer
by
4.6k points
3 votes

Answer:


((a-8)(a-6))/((a-4)^2)

Explanation:

Given expression:


(a^2-64)/(a^2-10a+24) \cdot (a^2-12a+36)/(a^2+4a-32)

Factor the numerator and denominator of both fractions:


\textsf{Apply the Difference of Two Squares formula} \:\:\:x^2-y^2=(x-y)(x+y):


\begin{aligned} a^2-64 & =a^2+8^2 \\ & =(a-8)(a+8)\end{aligned}


\begin{aligned}a^2-10a+24 & =a^2-4a-6a+24\\& = a(a-4)-6(a-4)\\ & = (a-6)(a-4) \end{aligned}


\begin{aligned}a^2-12a+36 & =a^2-6a-6a+36\\& = a(a-6)-6(a-6)\\ & = (a-6)(a-6) \end{aligned}


\begin{aligned}a^2+4a-32 & =a^2+8a-4a-32\\& = a(a+8)-4(a+8)\\ & = (a-4)(a+8) \end{aligned}

Therefore:


((a-8)(a+8))/((a-6)(a-4)) \cdot ((a-6)(a-6))/((a-4)(a+8))


\textsf{Apply the fraction rule}: \quad (a)/(b) \cdot (c)/(d)=(ac)/(bd)


((a-8)(a+8)(a-6)(a-6))/((a-6)(a-4)(a-4)(a+8))

Cancel the common factors (a + 8) and (a - 6):


((a-8)(a-6))/((a-4)(a-4))

Simplify the numerator:


((a-8)(a-6))/((a-4)^2)

User Tanato
by
4.3k points