Using the quadratic formula, we solve for
.
![z^4 - 5(1+2i) z^2 + 24 - 10i = 0 \implies z^2 = \frac{5+10i \pm √(-171+140i)}2](https://img.qammunity.org/2023/formulas/mathematics/college/1amz3kggup5uwum10rvgrp5gzyq9yf3kgg.png)
Taking square roots on both sides, we end up with
![z = \pm \sqrt{\frac{5+10i \pm √(-171+140i)}2}](https://img.qammunity.org/2023/formulas/mathematics/college/k9eezmu6p6kn7hfdpsfyp7mrzgi1vkqgsb.png)
Compute the square roots of -171 + 140i.
![|-171+140i| = √((-171)^2 + 140^2) = 221](https://img.qammunity.org/2023/formulas/mathematics/college/35aptlscc8j4p7b4kudi2a3kizh4aeahrt.png)
![\arg(-171+140i) = \pi - \tan^(-1)\left((140)/(171)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/to29vo5sgi3vi79a4bp3v4zczf523e0rnq.png)
By de Moivre's theorem,
![√(-171 + 140i) = √(221) \exp\left(i \left(\frac\pi2 - \frac12 \tan^(-1)\left((140)/(171)\right)\right)\right) \\\\ ~~~~~~~~~~~~~~~~~~~~= √(221) i \left((14)/(√(221)) + \frac5{√(221)}i\right) \\\\ ~~~~~~~~~~~~~~~~~~~~= 5+14i](https://img.qammunity.org/2023/formulas/mathematics/college/sfsfjiv81ow6okhm7oriqulnonz0sng9fi.png)
and the other root is its negative, -5 - 14i. We use the fact that (140, 171, 221) is a Pythagorean triple to quickly find
![t = \tan^(-1)\left((140)/(171)\right) \implies \cos(t) = (171)/(221)](https://img.qammunity.org/2023/formulas/mathematics/college/ts1btahg2pf9tm1se093og14sorhls7znx.png)
as well as the fact that
![0<\tan(t)<1 \implies 0along with the half-angle identities to find</p><p>[tex]\cos\left(\frac t2\right) = \sqrt{\frac{1+\cos(t)}2} = (14)/(√(221))](https://img.qammunity.org/2023/formulas/mathematics/college/ozgk2mevb82tt5yqvfsakv4nuj37fcbyj2.png)
![\sin\left(\frac t2\right) = \sqrt{\frac{1-\cos(t)}2} = \frac5{√(221)}](https://img.qammunity.org/2023/formulas/mathematics/college/6lo6b9epot5jv0n9i9fyfr2ihei70yazfm.png)
(whose signs are positive because of the domain of
).
This leaves us with
![z = \pm \sqrt{\frac{5+10i \pm (5 + 14i)}2} \implies z = \pm √(5 + 12i) \text{ or } z = \pm √(-2i)](https://img.qammunity.org/2023/formulas/mathematics/college/jvrwnts0rlx89mq6uosfscmamt282z3j1j.png)
Compute the square roots of 5 + 12i.
![|5 + 12i| = √(5^2 + 12^2) = 13](https://img.qammunity.org/2023/formulas/mathematics/college/ipa6eloue29tt8esla72f5vmch4bl293f0.png)
![\arg(5+12i) = \tan^(-1)\left(\frac{12}5\right)](https://img.qammunity.org/2023/formulas/mathematics/college/yv34t2zlvqhi1kzxdmmp47zkyl2i10vggo.png)
By de Moivre,
![√(5 + 12i) = √(13) \exp\left(i \frac12 \tan^(-1)\left(\frac{12}5\right)\right) \\\\ ~~~~~~~~~~~~~= √(13) \left(\frac3{√(13)} + \frac2{√(13)}i\right) \\\\ ~~~~~~~~~~~~~= 3+2i](https://img.qammunity.org/2023/formulas/mathematics/college/fxobm0izbyov8n01m2lbk1tkkg2dji6e8f.png)
and its negative, -3 - 2i. We use similar reasoning as before:
![t = \tan^(-1)\left(\frac{12}5\right) \implies \cos(t) = \frac5{13}](https://img.qammunity.org/2023/formulas/mathematics/college/3oy0oxg30wt3aiv78tb9yorxw5bx363x97.png)
![1 < \tan(t) < \infty \implies \frac\pi4 < t < \frac\pi2 \implies \frac\pi8 < \frac t2 < \frac\pi4](https://img.qammunity.org/2023/formulas/mathematics/college/gnzmjxicm5jguc4gdfw3th1pglw6rwsrbb.png)
![\cos\left(\frac t2\right) = \frac3{√(13)}](https://img.qammunity.org/2023/formulas/mathematics/college/7tq64cq3tjyptvjm7lccqpeoyvzwpcgx0z.png)
![\sin\left(\frac t2\right) = \frac2{√(13)}](https://img.qammunity.org/2023/formulas/mathematics/college/o1kigkgiqlcrfqjukab7uo81hgfto38amb.png)
Lastly, compute the roots of -2i.
![|-2i| = 2](https://img.qammunity.org/2023/formulas/mathematics/college/cvfhhgpf1odew36owouh0g3bqzf49k8frx.png)
![\arg(-2i) = -\frac\pi2](https://img.qammunity.org/2023/formulas/mathematics/college/i5mkcoj8j898cfh7l0c0g9tn17pfoc1mv2.png)
![\implies √(-2i) = \sqrt2 \, \exp\left(-i\frac\pi4\right) = \sqrt2 \left(\frac1{\sqrt2} - \frac1{\sqrt2}i\right) = 1 - i](https://img.qammunity.org/2023/formulas/mathematics/college/6a8u2tthqzt3z4ohcqg28ifc45rl9dw720.png)
as well as -1 + i.
So our simplified solutions to the quartic are
![\boxed{z = 3+2i} \text{ or } \boxed{z = -3-2i} \text{ or } \boxed{z = 1-i} \text{ or } \boxed{z = -1+i}](https://img.qammunity.org/2023/formulas/mathematics/college/um41ufoqvn8bu1sbwmvaghzlqbe30rvbtp.png)