48.6k views
3 votes
50 points!!!
Someone help pls, I can’t understand it and it’s due tomorrow :c

50 points!!! Someone help pls, I can’t understand it and it’s due tomorrow :c-example-1
User Theemee
by
4.6k points

1 Answer

4 votes


{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}


\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

Arrange the given data in order either in ascending order or descending order.

2, 3, 4, 7, 9, 11

❍ Number of terms in data [n] = 6 which is even.

As we know,


\star \: \sf Median_((when \: n \: is \: even)) = {\underline{\boxed{\sf{\purple{ \frac{ { \bigg ((n)/(2) \bigg)}^(th)term +{ \bigg( (n)/(2) + 1 \bigg)}^(th) term } {2} }}}}}


\\


\sf Median_((when \: n \: is \: even)) ={ \frac{ { \bigg ((6)/(2) \bigg)}^(th)term +{ \bigg( (6)/(2) + 1 \bigg)}^(th) term } {2} }


\\


\sf Median_((when \: n \: is \: even)) ={ \frac{ {3}^(rd) term +{ \bigg( (6 + 2)/(2) \bigg)}^(th) term } {2} }


\\


\sf Median_((when \: n \: is \: even)) ={ \frac{ {3}^(rd) term +{ \bigg( \cancel{ (8)/(2)} \bigg)}^(th) term } {2} }


\\


\sf Median_((when \: n \: is \: even)) ={ \frac{ {3}^(rd) term +{ 4}^(th) term } {2} }

Putting,

3rd term as 4 and the 4th term as 7.


\longrightarrow \: \sf Median_((when \: n \: is \: even)) ={ \frac{ 4 + 7 } {2} }


\longrightarrow \: \sf Median_((when \: n \: is \: even)) ={ \frac{ 11} {2} }


\longrightarrow \: \sf Median_((when \: n \: is \: even)) = \purple{5.5}


\\


{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}


\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

Arrange the given data in order either in ascending order or descending order.

1, 2, 3, 4, 5, 6, 7

❍ Number of terms in data [n] = 7 which is odd.

As we know,


\star \: \sf Median_((when \: n \: is \: odd)) = {\underline{\boxed{\sf{\red{ { \bigg( (n + 1)/(2) \bigg)}^(th) term}}}}}


\\


\sf Median_((when \: n \: is \: odd)) = {{ \bigg(\frac{ 7 + 1 } {2} \bigg) }}^(th) term


\\


\sf Median_((when \: n \: is \: odd)) = { \bigg(\cancel{(8)/(2)} \bigg)}^(th) term


\\


\sf Median_((when \: n \: is \: odd)) ={ 4}^(th) term

• Putting,

4th term as 4.


\longrightarrow \: \sf Median_((when \: n \: is \: odd)) = \red{ 4}


\\


{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}


\star\:{\underline{\underline{\sf{\green{Solution:}}}}}

The frequency distribution table for calculations of mean :


\begin{gathered}\begin{array}c \hline \rm x_(i) &\rm 3&\rm 1&\rm 7&\rm 4&\rm 6&\rm 2 \rm \\ \hline\rm f_(i) &\rm 4&\rm 6&\rm 2&\rm 2 & \rm 1&\rm 1 \\ \hline \rm f_(i)x_(i) &\rm 12&\rm 6&\rm 14&\rm 8&\rm 6&\rm \rm 2 \\ \hline \end{array} \\ \end{gathered}

Calculating the
\sum f_(i)


\implies 4 + 6 + 2 + 2 + 1 + 1


\implies 16

Calculating the
\sum f_(i)x_(i)


\implies 12 + 6 + 14 + 8 + 6 + 2


\implies 48

As we know,

Mean by direct method :


\: \: \boxed{\green{{ { \overline{x} \: = \sf ( \sum \: f_(i)x_(i))/( \sum \: f_(i))}}}}

here,


\sum f_(i) = 16


\sum f_(i)x_(i) = 48

By putting the values we get,


\sf \longrightarrow \overline{x} \: = \: (48)/(16)


\sf \longrightarrow \overline{x} \: = \green{3}


{\large{\textsf{\textbf{\underline{\underline{Note\: :}}}}}}

• Swipe to see the full answer.


\begin{gathered} {\underline{\rule{290pt}{3pt}}} \end{gathered}

User Crosbie
by
4.4k points