79.4k views
0 votes
Solve the inequality. 14 + 10y ≥ 3(y + 14)

User Sabauma
by
7.9k points

1 Answer

4 votes


\large\displaystyle\text{$\begin{gathered}\sf \bf{14+10y\geq 3(y+14) } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{Simplify \ both \ sides \ of \ the \ inequality. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{10y+14\geq 3y+14 } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{Subtract \ 3y \ from \ both \ sides. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{10y+14-3y\geq 3y+42-3y } \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf \bf{7y+14\geq 41 } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{ Subtract \ 14 \ from \ both \ sides. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{7y+14-14\geq 42-14 } \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf \bf{7y\geq 28 } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{Divide \ both \ sides \ by \ 7. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{(7y)/(7)\geq (28)/(7) } \end{gathered}$}\\\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{y\geq 4} \end{gathered}$} }
User Tonyf
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories