159k views
0 votes
Calculate x for each of the following right angled triangles.

Give your answer as a simplified surd (or integer).

Calculate x for each of the following right angled triangles. Give your answer as-example-1
User Xela
by
8.5k points

1 Answer

6 votes


\huge\underline{\red{A}\green{n}\blue{s}\purple{w}\pink{e}\orange{r} →}

(a) x = 6.5 cm

(b) x = 10 cm

(c) x = 7 cm

(d) x = 7.9 cm

Explanation:

To find an unknown side of a right angled triangle we use a theorum called pythagorus theorum..

Formula :

(Hypotenuse)^2 = (Perpendicular)^2 + (Base)^2

(h)^2 = (p)^2 + (b)^2

therefore,

(a) hypotenuse = x cm, base = √30 cm, perpendicular = √12 cm.

by formula,

→ h^2 = p^2 + b^2

→ (x)^2 = (√12)^2 + (√30)^2

→ x^2 = 12 + 30

→ x^2 = 42

→ x = √42

→ x = 6.480...

→ x = 6.5 cm. (approx)

___________________________

(b) hypotenuse = √300 cm, base = √200 cm,perpendicular = x cm.

by formula,

→ h^2 = p^2 + b^2

→ (√300)^2 = (x)^2 + (√200)^2

→ 300 = x^2 + 200

→ x^2 = 300 – 200

→ x^2 = 100

→ x = √100

→ x= 10 cm.

___________________________

(c) hypotenuse = √66 cm, base = √17 cm,perpendicular = x cm.

by formula,

→ h^2 = p^2 + b^2

→ (√66)^2 = (x)^2 + (√17)^2

→ 66 = x^2 + 17

→ x^2 = 66 – 17

→ x^2 = 49

→ x = √49

→ x = 7 cm.

___________________________

(d) hypotenuse = x cm, base = 5√12 cm,perpendicular = 2√3 cm.

by formula,

→ h^2 = p^2 + b^2

→ (x)^2 = (2√3)^2 + (5√12)^2

→ x^2 = 12 + 50

→ x^2 = 62

→ x = √62

→ x = 7.874...

→ x = 7.9 cm. (approx)

___________________________

Hope it helps you!!

User Mobin Yardim
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories