It looks like you're given
![x(t) = -11\,\mathrm m + \left(1(\rm m)/(\rm s)\right) t - \left(5(\rm m)/(\mathrm s^3)\right) t^3](https://img.qammunity.org/2023/formulas/physics/high-school/zvmfmmi3tnjnztu4ieqe3sj9dh9p4n5gih.png)
![y(t) = 19\,\mathrm m + \left(3(\rm m)/(\rm s)\right) t - \left(9(\rm m)/(\mathrm s^2)\right) t^2](https://img.qammunity.org/2023/formulas/physics/high-school/w4ym49us7zz3dcrsr6jbtikf9bhm8asnbo.png)
The particle's position vector at time
is given by
![\vec r(t) = x(t)\,\vec\imath + y(t)\,\vec\jmath](https://img.qammunity.org/2023/formulas/physics/high-school/idcl7bg2n3nkw0ykl9ae09ekin4015bgjy.png)
Differentiate
twice to recover the velocity and acceleration vectors.
![\vec a(t) = (d\vec v(t))/(dt) = (d^2\vec r)/(dt^2) = x''(t)\,\vec\imath + y''(t)\,\vec\jmath \\\\ \implies \vec v(t) = \left(1(\rm m)/(\rm s) - \left(15(\rm m)/(\mathrm s^3)\right) t^2\right)\,\vec\imath + \left(3(\rm m)/(\rm s) - \left(18(\rm m)/(\mathrm s^2)\right) t\right) \,\vec\jmath \\\\ \implies \vec a(t) = -\left(30(\rm m)/(\mathrm s^3)\right)t \, \vec\imath - \left(18(\rm m)/(\mathrm s^2)\right) \,\vec\jmath](https://img.qammunity.org/2023/formulas/physics/high-school/f3zm13cz6gjkvmhqx0ju3umfwzzwin8x69.png)
At
, the particle has acceleration
![\vec a(1.4\,\mathrm s) = \left(-42\,\vec\imath - 18\,\vec\jmath) (\rm m)/(\mathrm s^2)](https://img.qammunity.org/2023/formulas/physics/high-school/s5je757ndgzjsbf22odzjoegsvffht4u6z.png)
with magnitude
![\|\vec a(1.4\,\mathrm s)\| = \sqrt{\left(-42(\rm m)/(\mathrm s^2)\right)^2 + \left(-18(\rm m)/(\mathrm s^2)\right)^2} \approx 45.695(\rm m)/(\mathrm s^2)](https://img.qammunity.org/2023/formulas/physics/high-school/zxe5k619q5t3h0rqka0mnlw4632i08m75c.png)
and making an angle
relative to the positive
-axis such that
![\tan(\theta) = (-18)/(-42) = \frac37](https://img.qammunity.org/2023/formulas/physics/high-school/dnfdscu13no64mexthc0vgp3khewqsh9vr.png)
Since both components of the acceleration vector have negative sign, the acceleration points into the third quadrant, so that we add a multiple of 180° after taking the inverse tangent of both sides, namely
![\theta = \tan^(-1)\left(\frac37\right) - 180^\circ \approx -156.801^\circ](https://img.qammunity.org/2023/formulas/physics/high-school/rmrmsjqt8ckbppf2ez43jc1jdjgcxlmuau.png)
Now, (a) the magnitude of the net force acting on the particle is, by Newton's second law,
![F = (0.41\,\mathrm{kg})\|\vec a(1.4\,\mathrm s)\| \approx \boxed{18.735\,\mathrm N}](https://img.qammunity.org/2023/formulas/physics/high-school/afobomft0ykwwrl8xprn21t4z50pfb0ss9.png)
and (b) makes the same angle as the acceleration vector,
.
At this moment, its velocity vector is
![\vec v(1.4\,\mathrm s) = \left(-28.4\vec\imath - 22.2\,\vec\jmath\right) (\rm m)/(\rm s)](https://img.qammunity.org/2023/formulas/physics/high-school/uxuzkep74dhyp5z58holaogouu8td35j7o.png)
which (c) makes an angle
such that
![\tan(\theta) = (-22.2)/(-28.4) = (111)/(142)](https://img.qammunity.org/2023/formulas/physics/high-school/sm9w6ddhtwhvb1i669uvpfc8ydtpo9hl9f.png)
This vector also points in the third quadrant, so
![\theta = \tan^(-1)\left((111)/(142)\right) -180^\circ \approx \boxed{-142.986^\circ}](https://img.qammunity.org/2023/formulas/physics/high-school/qrxm3tcucilnji37kv3j1qpcprowpnwkth.png)