121k views
4 votes
Prove that sin4a+2sin2acos2a+cos4a=1 ​

Prove that sin4a+2sin2acos2a+cos4a=1 ​-example-1
User DaneoShiga
by
5.0k points

1 Answer

4 votes


\qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star


\textsf{ \underline{\underline{Steps to solve the problem} }:}


\qquad❖ \: \sf \: \sin {}^(4) ( \alpha) + 2 \sin {}^(2) ( \alpha) \cos {}^(2) ( \alpha) + { \cos {}^(4) ( \alpha) }^{}


\qquad❖ \: \sf \:( \sin {}^(2) ( \alpha) ) {}^(2) + 2( \sin {}^(2) ( \alpha))( \cos {}^(2) ( \alpha)) + {( \cos {}^(2) ( \alpha)) }^{}

( use identity a² + 2ab + b² = (a + b)² )


\qquad❖ \: \sf \:( {\sin {}^(2)( { \alpha}) + \cos {}^(2) ( \alpha)) }^(2)

( sin² x + cos ² x = 1 )


\qquad❖ \: \sf \: {1}^(2)


\qquad❖ \: \sf \: {1}^{}


\qquad \large \sf {Conclusion} :

Value of that expression is 1

User Buddhi
by
5.2k points