Condene the logarithms on the left side by applying the property, ln(a) - ln(b) = ln(a / b):
ln(x - 2) - ln(x - 3) = 1
→ ln((x - 2) / (x - 3)) = 1
Now take the exponential of both sides:
exp(ln((x - 2) / (x - 3))) = exp(1)
(x - 2) / (x - 3) = e
Solve for x :
x - 2 = e (x - 3)
x - 2 = e x - 3e
x - e x = 2 - 3e
(1 - e) x = 2 - 3e
x = (2 - 3e) / (1 - e) ≈ 3.582